A Wireless and autonomous sensor for Integrated Engine Health Management

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 2, 2018
Yoann HEBRARD

Abstract

Providing the best availability of aircrafts is a main cause for concern in aeronautics industry. Integrated Engine Health Management (IEHM) is the up to date solution that is used by Aircraft Engine Manufacturers in order to maintain a fleet of engines operative. IEHM detect signs of failure before they happen is the key tool for improving the level of aircraft operability. There is a strong focus on the sensor part and particularly on a wireless autonomous load sensor. Measuring load can have a high value to estimate the remaining useful life of equipment’s like suspension rods or gears after a hard landing. Indeed, after such an event, aircraft companies need to know if suspension rods/gears are safe or could have been damaged. This paper presents the current CORALIE sensor development (autonomous wireless load recorder) that will enable maintenance operators to determine the load level seen by an engine link after a hard landing by simply setting a portable device near the mounting system. Interesting features are Energy Harvesting and RFID communication modules that have been developed for this sensor. Such autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on RFID technologies. Actually, low power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract wirelessly communicate data stored in these stand-alone systems. The first part of the paper is dedicated to benchmark the different wireless communication protocols against RFID available for the project application (engine pods). The second part gives a presentation of the RFID communication system (Antenna, reader and RFID front end circuit) developed for transmitting local data stored in the memory of the system for analysis in a SHM maintenance strategy. The last part presents real test of RFID wireless communication and provide a maturity assessment on the technology.

How to Cite

HEBRARD, Y. (2018). A Wireless and autonomous sensor for Integrated Engine Health Management. PHM Society European Conference, 4(1). https://doi.org/10.36001/phme.2018.v4i1.386
Abstract 368 | PDF Downloads 396

##plugins.themes.bootstrap3.article.details##

Keywords

RFID, wireless sensor, SHM

Section
Technical Papers