An Approach to Condition Monitoring of BLDC Motors with Experimentally Validated Simulation Data
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Due to their compact design and low number of wear parts, Brushless Direct Current (BLDC) motors are ideally suited for use in unmanned aerial vehicles (UAVs). In view of the growing areas of application and the increasing complexity of unmanned flight missions, the need for suitable safety mechanisms for the operation of technical components, such as BLDC motors, in unmanned aircraft drive trains is also increasing. The integration of redundant components analogous to manned aviation is often not possible for smaller unmanned aerial vehicles for weight reasons. Therefore, online-capable dynamic diagnosis and prognosis methods for monitoring safety-critical components of unmanned aircraft are subject of ongoing research.
One major challenge in the development of data based condition monitoring approaches for safety critical components is the availability of operational data of degraded components. This often leads to an unbalanced database without sufficient information on components’ degradation behavior.
In the presented work, this problem is approached by combining bench testing and simulation models. On a test rig, common degradation effects are recreated by targeted manipulation. This allows for a safe and expressive data acquisition of the components’ behavior. In order to reduce the material and time required to build up a sufficient database for condition monitoring with experimental data, the observable effects are replicated in a simulation. This provides the opportunity to create a large database with slight variations in simulation parameters and incorporated noise in the simulation.
The BLDC motor manipulation on the test rig includes mechanical, electrical and magnetic manipulation. The effects of the manipulation are analyzed and their representation by parameters in the corresponding simulation is derived. The model is built in MATLAB Simulink and replicates both the electrical and physical behavior of the motor, as well as its commutation behavior.
The established simulation data shall be used as a balanced dataset on which condition monitoring algorithms can be trained. This will allow for the comparison of various data based condition monitoring methods in the future. A remaining challenge lies in the time behavior of the analyzed degradation, which has not yet been explored in depth. The proposed approach might also be applied to further unmanned aerial vehicle components, such as servo motors.
How to Cite
##plugins.themes.bootstrap3.article.details##
Condition Monitoring, Brushless Direct Current motors, unmanned aerial vehicles, simulation models, Simulink
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.