Gear Diagnostics Based On Transfer Learning Methodologies and Digital Twinning

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Henrique Duarte Vieira de Sousa
Konstantinos Gryllias

Abstract

This paper outlines the motivation for the research, reviewed the relevant SOTA in TL and CM, and identified some current research gaps. Moreover a dedicated test rig that will be used for methodological development and experimental validation has been described in detail. Finally, a structured research plan has been proposed, with the ultimate objective of developing a robust and scalable methodology combining ML and DTs for fault diagnostics of WT gearboxes, thereby contributing meaningfully to the field of PHM.

How to Cite

Vieira de Sousa, H. D., & Gryllias, K. (2025). Gear Diagnostics Based On Transfer Learning Methodologies and Digital Twinning. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4643
Abstract 0 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Transfer Learning, Digital Twin, Condition Monitoring, Gear Diagnosis

References
American Gear Manufacturers Association. (2004). Fundamental rating factors and calculation methods for involute spur and helical gear teeth [ANSI Standard]. (ANSI/AGMA 2001-D04)
Antoni, J. (2007). Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing, 21(2), 597-630. doi: https://doi.org/10.1016/j.ymssp.2006.08.007
Eurostat. (n.d.-a). Commission sets out immediate actions to support the european wind power industry. Retrieved 2023-10-24, from https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5185
Eurostat. (n.d.-b). Renewables account for 24.5% of EU energy use in 2023. Retrieved 2024-12-19, from https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/ddn-20241219-3
Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A brief review of domain adaptation. In R. Stahlbock, G. M. Weiss, M. Abou-Nasr, C.-Y. Yang, H. R. Arabnia, & L. Deligiannidis (Eds.), Advances in data science and information engineering (p. 877-894). Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-030-71704-9 65
Li, W., Huang, R., Li, J., Liao, Y., Chen, Z., He, G., Yan, R. & Gryllias, K. (2022). A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 167, 108487. doi: https://doi.org/10.1016/j.ymssp.2021.108487
Liu, C., & Gryllias, K. (2022). Simulation-driven domain adaptation for rolling element bearing fault diagnosis. IEEE Transactions on Industrial Informatics, 18(9), 5760-5770. doi: 10.1109/TII.2021.3103412
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. doi: https://doi.org/10.1109/TKDE.2009.191
Santelo, T. N., de Oliveira, C. M. R., Maciel, C. D., & de Almeida Monteiro, J. R. B. (2022). Wind turbine failures review and trends. Journal of Control, Automation and Electrical Systems, 33(2), 505-521. doi: https://doi.org/10.1007/s40313-021-00789-8
Section
Doctoral Symposium Summaries

Most read articles by the same author(s)