Gear Diagnostics Based On Transfer Learning Methodologies and
Digital Twinning

Henrique Duarte Vieira de Sousa' 2 and Konstantinos Gryllias 2

! Department of Mechanical Engineering, KU Leuven
henriqueduarte.vieiradesousa @kuleuven.be

konstantinos.gryllias @ kuleuven.be

2 Flanders Make @ KU Leuven
Celestijnenlaan 300, Box 2420, 3001 Leuven, Belgium

ABSTRACT

In 2023, renewable energy sources represented 24.5% of to-
tal energy consumption within the EU (Eurostat, n.d.-b). This
figure reflects progress towards the target set by the European
Wind Power Action Plan, which aims for 42.5% of the EU’s
energy consumption to be derived from renewable sources by
2030 (Eurostat, n.d.-a), with wind energy representing one of
the main contributors to this transition. However, data com-
piled in (Santelo, de Oliveira, Maciel, & de Almeida Mon-
teiro, 2022) indicate that wind turbines (WTs) experience an
average of 0.402 failures per year, with each failure result-
ing, on average, in 130 hours of downtime per turbine. Gear-
box failures, in particular, represent one of the most frequent
and impactful failure modes, significantly contributing to the
overall levelized cost of energy (LCOE).

As a result, the implementation of condition-based monitor-
ing (CM) for high-risk components is of considerable im-
portance to maximize operational availability and minimize
downtime. CM methodologies focus on three core tasks: (1)
fault detection, (2) diagnosis, and (3) prognosis. These are
generally pursued through two main approaches: signal pro-
cessing techniques and machine learning (ML) algorithms.

Focusing on the latter approach, the advent of deep learn-
ing (DL), together with the increasing volume of data gener-
ated by modern systems, has brought a significant capability
to infer complex relationships within the data. This enables
high accuracy across all three components of condition-based
monitoring (CM) requiring less extensive domain expertise
than what is often necessary for signal processing techniques.
However, as pointed out in (Li et al., 2022), the application of
DL in CM is hindered by two main challenges: the scarcity
of high-quality labeled data and the shift in distribution be-
tween training and testing datasets, both of which limit the
performance of DL-based models.

To mitigate these limitations, transfer learning (TL) has been
introduced. As described by (Pan & Yang, 2010), TL al-
lows for differences between training and testing domains
and tasks. A domain is defined by a feature space and a
marginal probability distribution, D = {X, P(X)}, where
X ={x1,...,x,} € X. A task is defined by a label space
and a predictive function, 7 = {), P(y|x)}. In contrast
to standard machine learning formulations — where training
and testing must share the same domain and task — TL per-
mits differences in feature mappings, marginal distributions,
label spaces, and objectives. In TL, three categories are es-
tablished, depending on the characteristics of the domains and
tasks, according to (Pan & Yang, 2010). They are: (1) induc-
tive; (2) transductive; and (3) unsupervised.

Within the context of CM, transductive TL is the predomi-
nant paradigm for classification tasks, since labeled data in
the source domain is essential for identifying the fault and its
location, while the central challenge lies in addressing the dis-
tributional shift between the source and target domains. Out
of the possible methodologies, domain adaptation remains the
most useful, assuming a shared feature space between do-
mains and aiming to identify a common latent representation
in which the marginal distributions are aligned.

However, domain adaptation has advanced beyond the clas-
sical formulation—known as closed-set domain adapta-
tion—which assumes identical label spaces and focuses
solely on domain shift. As datasets have grown in complex-
ity, this assumption has become increasingly restrictive. To
address this, the notion of category gap has been introduced,
as discussed in (Farahani, Voghoei, Rasheed, & Arabnia,
2021), where the label space ) is permitted to differ across
domains. This generalization, illustrated in Figure 1, enables
the use of more various datasets, thereby enhancing model
robustness and flexibility.

Moreover, the integration of data from multiple source
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domains—referred to as multi-source domain adapta-
tion—further extends the applicability of TL in CM. De-
spite the promise of these more general approaches, current
research, as summarized in (Li et al., 2022), indicates that
closed-set, single-source domain adaptation remains the most
commonly adopted strategy in the field.

Open Set Domain Adaptation
Source Target

Partial Domain Adaptation
Source Target

55

Closed Set Domain Adaptation
Source Target

Figure 1. Types of domain adaptation according to (Farahani
etal., 2021).

An alternative approach within the TL field is the integration
of digital twins (DTs) to generate synthetic healthy and faulty
data. In this framework, a virtual representation of the physi-
cal system serves as the source domain. Three primary mod-
eling approaches can be employed in ascending order of both
fidelity and computational cost: (1) phenomenological / an-
alytical models; (2) multibody dynamic models; or (3) high-
fidelity finite element models (FEM). The use of the more
complex solutions offer a higher degree of realism, with the
ability of simulating the transmission path of fault-induced
vibrations from their origin to sensors mounted on the hous-
ing. In contrast, phenomenological and analytical models are
computationally more efficient, allowing for rapid generation
of large synthetic datasets, albeit at the cost of physical ac-
curacy. Given the focus of this research on CM and ML ap-
plication, the current state-of-the-art (SOTA) in digital twin
technologies is sufficient to create a detailed dataset that can
simulate the behavior of the real system under healthy and
faulty conditions.

Beyond modeling techniques, sensor diversity remains an in-
teresting characteristic to explore in CM. While accelerome-
ters and encoders dominate the field, alternative sensing tech-
nologies, such as fiber optic sensors, have untapped potential.
These have already been adopted in structural health monitor-
ing but remain in a infant stage for CM applications. Notably,
fiber Bragg grating (FBG) sensors present a promising avenue
for further investigation. Lastly, how to combine all the dif-
ferent type of information for both DTs and ML algorithms is
a topic that can be delved into.

The present research aims to develop and validate a method-
ology for fault classification within gearboxes, with a partic-
ular focus on gear-related anomalies. Validation will be con-

ducted using both measurements acquired in in-house dedi-
cated test rigs and publicly available datasets relevant to WTs.
The anticipated contributions to the field of prognostics and
health management (PHM) include:

1. The development of a robust end-to-end framework for
fault classification, from raw sensor input to final diag-
nostic output, with computational efficiency suitable for
real-time application;

2. A seamless integration between the DT of the gearbox,
the simulation of synthetic faults, and the generation of
TL-compatible datasets;

3. A hybrid diagnostic method that fuses domain-specific
signal processing features with deep learning representa-
tions;

4. The incorporation of heterogeneous sensor data — pri-
marily from accelerometers, encoders, and fiber optic
sensors (specifically, FBG sensors) — to enhance diag-
nostic robustness.

The overall framework of the proposed methodology can be
illustrated using a DT of an in-house gearbox with an exam-
ple developed by (Liu & Gryllias, 2022). During the course
of this research, a new method will be developed, and multi-
ple types of digital twins (DTs) will be evaluated, effectively
replacing the workflow shown in Figure 2.

The achievement of the research objectives will follow the
preliminary structured plan outlined below:

1. Literature review. This task will be carried out through-
out the entire research timeline and focuses on three main
areas: (a) current SOTA in TL and ML methods; (b)
gearbox modeling, with special attention to gear-level
fault modeling; and (c) signal processing techniques and
health indicators (HIs).

2. Transfer learning. The author will study various SOTA
methodologies as described in (Li et al., 2022) and be-
yond, to understand the current vanguard within CM,
and build upon them. Within the topic of TL, the au-
thor wants to create a flexible methodology that is able
to generalize to more domains than the one represent-
ing the real asset of the DT. The research will explore
open-set domain adaptation, recognizing that real-world
systems rarely follow the assumption that source and tar-
get label spaces are identical and its performance will
be benchmarked. Multi-source domain adaptation will
also be examined, combining real and synthetic domains
to enhance knowledge transfer. In addition, the effects
of having labeled or unlabeled data in the target domain
will be explored to maximize robustness. The author will
study positive transfer learning to determine the condi-
tions under which source domains contribute construc-
tively to performance, and will investigate methods to
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Figure 2. An example for the methodology using AMESim and the methodogy proposed by (Liu & Gryllias, 2022).

control dataset imbalance, which may otherwise distort
classifier behavior. In order to avoid establishing the ML
algorithm as just a black box, the author will also dive
into the realm of explainable Al to allow for more trans-
parency between the model’s decisions and the frame-
work’s user. Lastly, a detailed investigation into the ML
components, such as network architecture, optimization
algorithms, training dynamics, will be performed to en-
sure accurate and reliable decision-making.

Signal processing study. This task involves review-
ing SOTA signal processing techniques across time, fre-
quency, and time-frequency domains. Signal prepara-
tion methods such as segmentation, normalization, and
domain-specific preprocessing like Time Synchronous
Averaging will be studied first. Subsequent efforts will
focus on: (a) characterizing how faults manifest in time
and frequency signals to inform feature extraction; (b)
evaluating statistical indicators like RMS, variance, kur-
tosis, and skewness to enrich model inputs; and (c) ap-
plying more advanced tools such as cyclostationary anal-
ysis (Antoni, 2007), envelope spectrum analysis, wavelet
transforms, and short-time Fourier transforms for robust
feature extraction. The goal is to provide a robust signal
processing backbone for the ML framework.

Modeling study. The author will develop DTs of gear-
boxes, first using data from experimental test rigs and
later extending the models to wind turbines, with the
knowledge available from the SOTA. Furthermore, com-
mon gear and bearing faults, such as pitting, tooth crack,
and spalls, will be studied and simulated within the DT,
providing a fully synthetic dataset that will train the al-
gorithm into correctly classifying the data coming from
the real asset. The resulting data will reflect sensor mea-
surements from accelerometers, encoders, and fiber optic
sensors by modeling the transfer path from component
to housing (with this step not being possible for the phe-
nomenological and analytical models). Lastly, the author

will look into model updating techniques to fine-tune the
behavior of the model, as data arrives from the real sys-
tem. The modeling aspect of the research will be per-
formed at various levels, starting from phenomenologi-
cal models all the way to multi-body software and finite
element solutions.

5. Validation. This task will occur throughout the research
process. Accelerated life testing will be conducted to in-
duce realistic gear and bearing faults under various op-
erational conditions. Data from diverse sensor types will
be used to validate the proposed ML framework, both in
training and in testing phases.

The test rig that will be used is presented in Figure 3. This
setup will not only support experimental validation of the pro-
posed methodology but will also provide the necessary data
for training the machine learning algorithm.

Figure 3. Back-to-Back Gearbox Test Rig.

The test rig was designed with the primary objective of accel-
erating the development of gear defects while enabling visual
observation of their onset. Beyond this, it provides valuable
diagnostic information, including the measurement of trans-
mission error (TE), which will contribute directly to the ob-
jectives of this research.

The rig consists of two identical induction motors, each ca-
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pable of delivering 30 kW at a nominal speed of 3000 rpm.
One motor acts as the driver, rotating the drivetrain, while the
other provides the load. This configuration is enabled by the
presence of two gearboxes in the system: the test gearbox and
a secondary “drive” gearbox that functions as a load multi-
plier. This arrangement not only permits the use of smaller
motors to achieve target load levels but also enables both
speed and torque control using identical motors, provided that
both gearboxes share similar gear ratios.

Both gearboxes are two-stage helical parallel-shaft configu-
rations. The test gearbox has a gear ratio of 5.12 given by
z1 = 48, z9 = 57, z3 = 13, z4 = 56, while the drive
gearbox has a gear ratio of 5.27 defined by z; = 37, 29 =
44, z3 = 14, z4 = 62. The test gearbox is lubricated using a
mineral oil, with temperature monitored at both the inlet and
outlet, whereas the drive gearbox employs synthetic oil. Both
gearboxes utilize traditional oil bath lubrication systems.

The primary fault mode of interest is pitting, with additional
focus on spalls and tooth cracks. These faults will be artifi-
cially accelerated by overloading the system based on the de-
sign formulas established in (American Gear Manufacturers
Association, 2004), targeting the most vulnerable component,
i.e., the second-stage pinion.

The test rig is equipped with four encoders: one on each mo-
tor, and one at both the input and output shafts of the test
gearbox. The motor encoder on the speed motor supports the
closed-loop control of speed, while the gearbox encoders en-
able the global calculation of TE for the gearbox. To support
visual diagnostics, the test gearbox has been modified to al-
low optical access to the second-stage pinion. This enables
visual inspection during acquisition time and the creation of
a visual dataset synchronized with sensor data, allowing pre-
cise identification of fault initiation and evolution.

Additional instrumentation includes a torque sensor posi-
tioned between the test and drive gearboxes, which con-
tributes to torque loop control. Multiple accelerometers are
distributed across the rig: on the motors, the base plate, the
drive gearbox, and most importantly, on the test gearbox. Two
tri-axial accelerometers are mounted on the test gearbox - one
on the input side and the other on the output side — to capture
high-resolution vibration data critical for fault diagnosis.

An in-house software has been developed to support auto-
mated testing with the various data acquisition systems. This
software controls the speed and load profiles (both station-
ary and time-varying), interfaces with the traditional data ac-
quisition system and the camera, and automates the collec-
tion of vibration and visual data. With an initial offset be-
tween data types, vibration data is recorded every 10 min-
utes, while visual data is acquired hourly. Synchronization is
achieved by temporarily reducing the rotational speed during
image capture to ensure clarity. Continuous monitoring of the

output-side accelerometer, a key sensor, is also implemented
as a safety measure. After acquisition, all real-time data is
streamed to an online monitoring platform where SOTA and
in-house algorithms are applied for advanced condition mon-
itoring.

In summary, this paper outlines the motivation for the re-
search, reviewed the relevant SOTA in TL and CM, and iden-
tified some current research gaps. Moreover a dedicated test
rig that will be used for methodological development and ex-
perimental validation has been described in detail. Finally,
a structured research plan has been proposed, with the ulti-
mate objective of developing a robust and scalable method-
ology combining ML and DTs for fault diagnostics of WT
gearboxes, thereby contributing meaningfully to the field of
PHM.
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