Assumption-based Design of Hybrid Diagnosis Systems Analyzing Model-based and Data-driven Principles

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 5, 2024
Daniel Jung Mattias Krysander

Abstract

Hybrid diagnosis systems combine model-based and data-driven methods to leverage their respective strengths and mitigate individual weaknesses in fault diagnosis. This paper proposes a unified framework for analyzing and designing hybrid diagnosis systems, focusing on the principles underlying the computation of diagnoses from observations. The framework emphasizes the importance of assumptions about fault modes and their manifestations in the system. The proposed architecture supports both fault decoupling and classification techniques, allowing for the flexible integration of model-based residuals and data-driven classifiers. Comparative analysis highlights how classical model-based and pure data-driven systems are special cases within the proposed hybrid framework. The proposed framework emphasizes that the key factor in categorizing fault diagnosis methods is not whether they are model-based or data-driven, but rather their ability to decuple faults which is crucial for rejecting diagnoses when fault training data is limited. Future research directions are suggested to further enhance hybrid fault diagnosis systems.

How to Cite

Jung, D., & Krysander, M. (2024). Assumption-based Design of Hybrid Diagnosis Systems: Analyzing Model-based and Data-driven Principles. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.4141
Abstract 89 | PDF Downloads 82

##plugins.themes.bootstrap3.article.details##

Keywords

Fault diagnosis, Model-based diagnosis, Data-driven diagnosis

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., . . . Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information fusion, 76, 243–297. doi: 10.1016/j.inffus.2021.05.008

Abid, A., Khan, M., & Iqbal, J. (2021). A review on fault detection and diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54, 3639–3664. doi: 10.1007/s10462-020-09934-2

Ahn, S., Lee, C., Jung, Y., Han, C., Yoon, E., & Lee, G. (2008). Fault diagnosis of the multi-stage flash desalination process based on signed digraph and dynamic partial least square. Desalination, 228(1-3), 68–83. doi: 10.1016/j.desal.2007.08.008

Amin, A., & Hasan, K. (2019). A review of fault tolerant control systems: advancements and applications. Measurement, 143, 58–68. doi: 10.1016/j.measurement.2019.04.083

Atoui, M., & Cohen, A. (2021). Coupling data-driven and model-based methods to improve fault diagnosis. Computers in Industry, 128, 103401. doi: 10.1016/j.compind.2021.103401

Atoui, M., Cohen, A., Verron, S., & Kobi, A. (2019). A single bayesian network classifier for monitoring with unknown classes. Engineering Applications of Artificial Intelligence, 85, 681–690. doi: 10.1016/j.engappai.2019.07.016

Becraft, W. R., Lee, P. L., & Newell, R. B. (1991). Integration of neural networks and expert systems for process fault diagnosis. In Proceedings of the 12th international joint conference on artificial intelligence-volume 2 (pp. 832–837).

Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. doi: 10.1023/A:1010933404324 Camastra, F., & Staiano, A. (2016). Intrinsic dimension estimation: Advances and open problems. Information Sciences, 328, 26–41. doi: 10.1016/j.ins.2015.08.029

Chen, H., Jiang, B., Ding, S., & Huang, B. (2020). Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives. IEEE Transactions on Intelligent Transportation Systems, 23(3), 1700–1716. doi: 10.1109/TITS.2020.3029946

Commault, C., Dion, J., Sename, O., & Motyeian, R. (2002). Observer-based fault detection and isolation for structured systems. IEEE Transactions on Automatic Control, 47(12), 2074–2079.

Dai, X., & Gao, Z. (2013). From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. IEEE Transactions on Industrial Informatics, 9(4), 2226–2238. doi: 10.1109/TII.2013.2243743

De Kleer, J., & Williams, B. (1987). Diagnosing multiple faults. Artificial intelligence, 32(1), 97–130. doi: 10.1016/0004-3702(87)90063-4

Destro, F., Facco, P., Munoz, S., Bezzo, F., & Barolo, M. (2020). A hybrid framework for process monitoring: Enhancing data-driven methodologies with state and parameter estimation. Journal of Process Control, 92, 333–351. doi: 10.1016/j.jprocont.2020.06.002

Feiyi, R., & Jinsong, Y. (2015). Fault diagnosis methods for advanced diagnostics and prognostics testbed (adapt): A review. In 2015 12th ieee international conference on electronic measurement & instruments (icemi) (Vol. 1, pp. 175–180). doi: 10.1109/ICEMI.2015.7494248

Frisk, E., Jarmolowitz, F., Jung, D., & Krysander, M. (2022). Fault diagnosis using data, models, or both–an electrical motor use-case. IFAC-PapersOnLine, 55(6), 533– 538. doi: 10.1016/j.ifacol.2022.07.183

Gao, Z., Cecati, C., & Ding, S. (2015). A survey of fault diagnosis and fault-tolerant techniques—part i: Fault diagnosis with model-based and signal-based approaches. IEEE transactions on industrial electronics, 62(6), 3757–3767. doi: 10.1109/TIE.2015.2417501

Garcia-Alvarez, D., Bregon, A., Pulido, B., & Alonso- Gonzalez, C. (2023). Integrating pca and structural model decomposition to improve fault monitoring and diagnosis with varying operation points. Engineering Applications of Artificial Intelligence, 122, 106145. doi: 10.1016/j.engappai.2023.106145

Ghosh, K., Ng, Y., & Srinivasan, R. (2011). Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods. Computers & chemical engineering, 35(2), 342–355. doi: 10.1016/j.compchemeng.2010.05.004

Goupil, L., Chanthery, E., Trav´e-Massuy`es, L., & Delautier, S. (2022). A survey on diagnosis methods combining dynamic systems structural analysis and machine learning. In 33rd international workshop on principle of diagnosis–dx 2022.

Gustafsson, F. (2007). Statistical signal processing approaches to fault detection. Annual Reviews in Control, 31(1), 41–54. doi: 10.1016/j.arcontrol.2007.02.004

Jung, D., Khorasgani, H., Frisk, E., Krysander,M., & Biswas, G. (2015). Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems. IFAC-PapersOnLine, 48(21), 1289– 1296. doi: 10.1016/j.ifacol.2015.09.703

Jung, D., Krysander, M., & Mohammadi, A. (2023). Fault diagnosis using data-driven residuals for anomaly classification with incomplete training data. IFACPapersOnLine, 56(2), 2903–2908.

Jung, D., Ng, K., Frisk, E., & Krysander, M. (2018). Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation. Control Engineering Practice, 80, 146–156. doi: 10.1016/j.conengprac.2018.08.013

Jung, D., & Sundstr¨om, C. (2017). A combined datadriven and model-based residual selection algorithm for fault detection and isolation. IEEE Transactions on Control Systems Technology, 27(2), 616–630. doi: 10.1109/TCST.2017.2773514

Khorasgani, H., Farahat, A., Ristovski, K., Gupta, C., & Biswas, G. (2018). A framework for unifying modelbased and data-driven fault diagnosis. In Annual conference of the phm society (Vol. 10).

Lee, G., Han, C., & Yoon, E. (2004). Multiple-fault diagnosis of the tennessee eastman process based on system decomposition and dynamic pls. Industrial & engineering chemistry research, 43(25), 8037–8048. doi: 10.1021/ie049624u


Lee, G., Tosukhowong, T., Lee, J., & Han, C. (2006). Fault diagnosis using the hybrid method of signed digraph and partial least squares with time delay: The pulp mill process. Industrial & engineering chemistry research, 45(26), 9061–9074. doi: 10.1021/ie060793j

Liu, Z., & Zhang, L. (2020). A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings. Measurement, 149, 107002. doi: 10.1016/j.measurement.2019.107002

Lundgren, A., & Jung, D. (2022). Data-driven fault diagnosis analysis and open-set classification of time-series data. Control Engineering Practice, 121, 105006. doi: 10.1016/j.conengprac.2021.105006

Luo, J., Namburu, M., Pattipati, K., Qiao, L., & Chigusa, S. (2009). Integrated model-based and datadriven diagnosis of automotive antilock braking systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(2), 321– 336. doi: 10.1109/TSMCA.2009.2034481

Melo, A., Cmara, M., Clavijo, N., & Pinto, J. (2022). Open benchmarks for assessment of process monitoring and fault diagnosis techniques: a review and critical analysis. Computers & Chemical Engineering, 107964. doi: 10.1016/j.compchemeng.2022.107964

Mirnaghi, M., & Haghighat, F. (2020). Fault detection and diagnosis of large-scale hvac systems in buildings using data-driven methods: A comprehensive review. Energy and Buildings, 229, 110492. doi: 10.1016/j.enbuild.2020.110492

Mohammadi, A., Krysander, M., & Jung, D. (2022). Analysis of grey-box neural network-based residuals for consistency-based fault diagnosis. IFAC-PapersOnLine, 55(6), 1–6. doi: 10.1016/j.ifacol.2022.07.097

Mosterman, P., & Biswas, G. (1999). Diagnosis of continuous valued systems in transient operating regions. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 29(6), 554–565. doi: 10.1109/3468.798059

Mylaraswamy, D., & Venkatasubramanian, V. (1997). A hybrid framework for large scale process fault diagnosis. Computers & chemical engineering, 21, S935–S940. doi: 10.1016/S0098-1354(97)87622-3

Odgaard, P., & Stoustrup, J. (2012). Results of a wind turbine fdi competition. IFAC Proceedings Volumes, 45(20), 102–107. doi: 10.3182/20120829-3-MX-2028.00015

Pernestl, A., Nyberg, M., & Warnquist, H. (2012). Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system. Engineering applications of artificial intelligence, 25(4), 705–719. doi: 10.1016/j.engappai.2011.02.018

Purbowaskito, W., Lan, C., & Fuh, K. (2024). The potentiality of integrating model-based residuals and machine learning classifiers: An induction motor fault diagnosis case. IEEE Transactions on Industrial Informatics, 20(2), 2822-2832. doi: 10.1109/TII.2023.3299111

Qin, S. J. (2012). Survey on data-driven industrial process monitoring and diagnosis. Annual reviews in control, 36(2), 220–234. doi: 10.1016/j.arcontrol.2012.09.004

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer science review, 15, 29–62. doi: 10.1016/j.cosrev.2015.03.001

Sanchez, H., Escobet, T., Puig, V., & Odgaard, P. (2015). Fault diagnosis of an advanced wind turbine benchmark using interval-based arrs and observers. IEEE Transactions on Industrial Electronics, 62(6), 3783– 3793. doi: 10.1109/TIE.2015.2399401

Sankavaram, C., Kodali, A., Pattipati, K., & Singh, S. (2015). Incremental classifiers for data-driven fault diagnosis applied to automotive systems. IEEE access, 3, 407– 419. doi: 10.1109/ACCESS.2015.2422833

Scheirer,W., Jain, L., & Boult, T. (2014). Probability models for open set recognition. IEEE transactions on pattern analysis and machine intelligence, 36(11), 2317–2324. doi: 10.1109/TPAMI.2014.2321392

Senjen, R., De Beler, M., Leckie, C., & Rowles, C. (1993). Hybrid expert systems for monitoring and fault diagnosis. In Proceedings of 9th ieee conference on artificial intelligence for applications (pp. 235–241). doi: 10.1109/CAIA.1993.366605

Spreafico, C., Russo, D., & Rizzi, C. (2017). A stateof- the-art review of fmea/fmeca including patents. Computer Science Review, 25, 19–28. doi: 10.1016/j.cosrev.2017.05.002

Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., . . . Nenadic, G. (2019). Machine learning methods for wind turbine condition monitoring: A review. Renewable energy, 133, 620–635. doi: 10.1016/j.renene.2018.10.047

Svard, C., Nyberg, M., Frisk, E., & Krysander, M. (2013). Automotive engine fdi by application of an automated model-based and data-driven design methodology. Control Engineering Practice, 21(4), 455–472. doi: 10.1016/j.conengprac.2012.12.006

Theissler, A., Perez-Velazquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliability engineering & system safety, 215, 107864. doi: 10.1016/j.ress.2021.107864

Tidriri, K., Chatti, N., Verron, S., & Tiplica, T. (2016). Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges. Annual Reviews in Control, 42, 63–81. doi: 10.1016/j.arcontrol.2016.09.008

Tidriri, K., Tiplica, T., Chatti, N., & Verron, S. (2018). A generic framework for decision fusion in fault detection and diagnosis. Engineering Applications of Artificial Intelligence, 71, 73–86. doi: 10.1016/j.engappai.2018.02.014

Trave-Massuyes, L. (2014). Bridging control and artificial intelligence theories for diagnosis: A survey. Engineering Applications of Artificial Intelligence, 27, 1– 16. doi: 10.1016/j.engappai.2013.09.018

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. (2003). A review of process fault detection and diagnosis: Part i: Quantitative model-based methods. Computers & chemical engineering, 27(3), 293–311. doi: 10.1016/S0098-1354(02)00160-6

Wang, Z., Liang, B., Guo, J., Wang, L., Tan, Y., & Li, X. (2023). Fault diagnosis based on residual–knowledge– data jointly driven method for chillers. Engineering Applications of Artificial Intelligence, 125, 106768. doi: 10.1016/j.engappai.2023.106768

Wilhelm, Y., Reimann, P., Gauchel, W., & Mitschang, B. (2021). Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics based and knowledge-based models. Procedia Cirp, 99, 278–283. doi: 10.1016/j.procir.2021.03.041

Witczak, M. (2006). Advances in model-based fault diagnosis with evolutionary algorithms and neural networks. International Journal of Applied Mathematics and Computer Science, 16(1), 85–99.

Xiong, R., Sun, W., Yu, Q., & Sun, F. (2020). Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Applied Energy, 279, 115855. doi: 10.1016/j.apenergy.2020.115855

Xu, Y., Kohtz, S., Boakye, J., Gardoni, P., &Wang, P. (2023). Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges. Reliability Engineering & System Safety, 230, 108900. doi: 10.1016/j.ress.2022.108900

Xu, Z., & Saleh, J. (2021). Machine learning for reliability engineering and safety applications: Review of current status and future opportunities. Reliability Engineering & System Safety, 211, 107530. doi: 10.1016/j.ress.2021.107530

Yan, K., Ji, Z., & Shen, W. (2017). Online fault detection methods for chillers combining extended kalman filter and recursive one-class svm. Neurocomputing, 228, 205–212. doi: 10.1016/j.neucom.2016.09.076

Yu, D., Shields, D., & Daley, S. (1996). A hybrid fault diagnosis approach using neural networks. Neural computing & applications, 4, 21–26. doi: 10.1007/BF01413866 Zio, E. (2022). Prognostics and health management (phm):

Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218, 108119. doi: 10.1016/j.ress.2021.108119
Section
Technical Research Papers

Most read articles by the same author(s)