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daniel.jung@liu.se

mattias.krysander@liu.se

ABSTRACT

Hybrid diagnosis systems combine model-based and data-
driven methods to leverage their respective strengths and mit-
igate individual weaknesses in fault diagnosis. This paper
proposes a unified framework for analyzing and designing
hybrid diagnosis systems, focusing on the principles under-
lying the computation of diagnoses from observations. The
framework emphasizes the importance of assumptions about
fault modes and their manifestations in the system. The pro-
posed architecture supports both fault decoupling and clas-
sification techniques, allowing for the flexible integration of
model-based residuals and data-driven classifiers. Compara-
tive analysis highlights how classical model-based and pure
data-driven systems are special cases within the proposed hy-
brid framework. The proposed framework emphasizes that
the key factor in categorizing fault diagnosis methods is not
whether they are model-based or data-driven, but rather their
ability to decouple faults which is crucial for rejecting diag-
noses when fault training data is limited. Future research di-
rections are suggested to further enhance hybrid fault diagno-
sis systems.

1. INTRODUCTION

A diagnosis system can be described as a function that uses
observations from the monitored system to compute diag-
noses. A diagnosis is a statement about the system’s health
that is consistent with the observations. The output from a
diagnosis system is updated over time, as new observations
are collected, and used as input to other functionalities, e.g.,
fault-tolerant control and fault mitigation (Amin & Hasan,
2019), computer-assisted troubleshooting (Pernestål, Nyberg,
& Warnquist, 2012), and prognostics (Zio, 2022). Thus,
the diagnosis system must draw reliable conclusions about
the system’s health, at every time instance, even when there
are classification ambiguities, to be able to take appropriate
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countermeasures. Drawing the wrong conclusions about de-
tected abnormal behavior can be both hazardous and expen-
sive. This can be summarized in the following design princi-
ples when developing a diagnosis system:

1. To avoid drawing the wrong conclusion about the sys-
tem’s health, the diagnosis system must not falsely reject
the true diagnosis candidate.

2. The diagnosis system should be as precise as possible re-
jecting diagnosis candidates that are not consistent with
system operation.

3. Faults should be detected and isolated at an early stage
for the system to act accordingly.

Designing a diagnosis system that fulfills these objectives is a
nontrivial problem and requires a good understanding of the
behavior of the system to be monitored and the characteristics
of the faults to be diagnosed.

1.1. Fault Diagnosis Methods

Because of its industrial and scientific relevance, the fault
diagnosis problem has been approached in many commu-
nities. Two common approaches are referred to as model-
based diagnosis and data-driven diagnosis (Jung, Ng, Frisk, &
Krysander, 2018). In model-based diagnosis, a mathematical
model of the system derived from physical insights is used to
detect inconsistencies between model predictions and obser-
vations, mainly by designing residual generators. Fault isola-
tion is then performed by matching residual patterns with dif-
ferent fault hypotheses derived from model analysis (Travé-
Massuyès, 2014). Data-driven fault diagnosis refers to meth-
ods that use historical data from different fault scenarios to
learn the relation between observations and class labels (di-
agnoses). A common data-driven approach is to formulate a
classification problem where fault diagnosis is a matter of as-
signing which class label best explains the observations based
on previous (training) data (Qin, 2012).

Still, the main principle of both model-based and data-driven
methods is to compare measurements with expected, or pre-
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dicted, system behavior to detect inconsistencies. Since both
approaches utilize some type of model of the system behav-
ior to describe the relation between different signals, the main
difference is based on what type of information the model
is derived. However, there is no clear distinction between
model-based diagnosis and data-driven diagnosis when com-
paring how observations are mapped to different diagnoses.

1.2. Modeling Assumptions and Fault Diagnosis

There are several complicating factors of fault diagnosis, such
as measurement noise and model inaccuracies but also lim-
ited information about potential fault scenarios and fault man-
ifestations (Sankavaram, Kodali, Pattipati, & Singh, 2015).
Developing sufficiently accurate models for fault diagnosis
can be a time-consuming process that requires expert system
knowledge. Another factor is that faults are rare events which
results in imbalanced training data and lack of representative
data of relevant fault scenarios. These issues need to be ad-
dressed in the diagnosis system design.

Ideally, a diagnosis system should compute all diagnoses that
can explain the observations. However, defining the set of ob-
servations that can be explained by each fault mode is in many
applications not feasible. Instead, different diagnosis system
design choices are made to approximate this relationship. Ex-
amples are the ’single-fault’ assumption that maximally one
fault is present in the system at the same time, and the ’ex-
oneration’ assumption that the risk of missed detections is
negligible (Travé-Massuyès, 2014).

Many design choices are based on assumptions about fault
modes, i.e., how different faults manifest in the system (Jung,
Khorasgani, Frisk, Krysander, & Biswas, 2015). Note that
these design choices do not have to be intentionally made by
the developer but have a significant impact on the diagnosis
output. For example, if formulating fault diagnosis as a classi-
fication problem, the diagnosis output will depend on whether
a closed-set classifier or an open-set classifier is used, i.e., are
all fault modes assumed to be known by the diagnosis sys-
tem or should it identify scenarios with potentially unknown
faults (Scheirer, Jain, & Boult, 2014). Identifying and apply-
ing valid assumptions for a given application can reduce diag-
nosis complexity and at the same time improve the fault diag-
nosis accuracy (Travé-Massuyès, 2014). On the other hand,
a diagnosis system that is designed based on the wrong as-
sumptions could result in falsely rejecting the true diagnosis.

The performance demand of the diagnosis system requires
careful identification of a suitable diagnosis solution for a
given application. This is a nontrivial task because it depends
on many factors, such as behavioral characteristics of differ-
ent faults, performance requirements, access to training data
and models, etc. Also, when validating a proposed diagnosis
system design, performance is evaluated based on a limited
set of fault realizations, which can be misleading if test data

is not representative of all possible fault realizations (Frisk,
Jarmolowitz, Jung, & Krysander, 2022).

Understanding how fault diagnosis methods are based on dif-
ferent assumptions about fault modes and the relationship be-
tween observations and diagnoses, is necessary to compare
different diagnosis system solutions. It is also possible to
avoid fault diagnosis solutions that are based on non-valid
assumptions for a given application. This is also important
when combining methods from different approaches in a hy-
brid diagnosis system design. If different models draw differ-
ent conclusions about the system’s health, a hybrid diagnosis
system should make use of all information and avoid con-
flicts, i.e. reject diagnoses when possible or rank diagnoses
based on which is most likely when there are diagnosis ambi-
guities, see e.g. (Jung et al., 2018).

1.3. Problem Formulation

The scope of this work is the design of hybrid diagnosis sys-
tems. Different hybrid diagnosis systems, tailored for specific
applications, have been proposed in the literature. However,
designing a hybrid diagnosis system that takes advantage of
different diagnosis methods, requires a unified view of how
to compute diagnoses.

The first objective is to develop a framework to analyze and
compare diagnosis system designs. The purpose is not on
how to evaluate the performance of a given design (e.g. false
alarm rate or classification accuracy) but on understanding
the fundamental principles of how different diagnosis system
solutions compute diagnoses, i.e. how it reasons about fault
hypotheses (Jung et al., 2015). The focus is on how the set of
diagnoses computed by the diagnosis system is dependent on
the assumptions made about how different faults manifest in
the system.

The second objective is, based on the developed framework,
to present a hybrid diagnosis system architecture that can be
used to combine different diagnosis methods in accordance to
the stated design principles. The purpose of the architecture
is a foundation to combine methods based on their properties
which should be a generalization of classical model-based
and data-driven architectures. Based on the results from this
study relevant directions for future research in hybrid fault
diagnosis are also proposed.

2. RELATED RESEARCH

Several survey papers have been published that describe fault
diagnosis state-of-the-art with a focus on a specific approach,
e.g., model-based diagnosis and signal-based fault diagno-
sis (Gao, Cecati, & Ding, 2015), data-driven fault diagnosis
(Abid, Khan, & Iqbal, 2021; Z. Xu & Saleh, 2021), physics-
informed machine learning for fault diagnosis (Y. Xu, Ko-
htz, Boakye, Gardoni, & Wang, 2023), condition monitoring
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(Stetco et al., 2019), or a given application, e.g., batteries
(Xiong, Sun, Yu, & Sun, 2020), traction systems in high-
speed trains (Chen, Jiang, Ding, & Huang, 2020), HVAC
systems (Mirnaghi & Haghighat, 2020), and wind-turbines
(Liu & Zhang, 2020; Stetco et al., 2019). The potential
of evolutionary algorithms and neural networks for fault di-
agnosis with respect to model-based methods are discussed
in (Witczak, 2006). The survey paper (Theissler, Pérez-
Velázquez, Kettelgerdes, & Elger, 2021) focused on machine
learning for predictive maintenance and identified challenges,
e.g. limited access to labeled data, and lack of public datasets.
The authors state that ML will not replace model-based meth-
ods but help in hybrid designs. A survey on prognostics and
health management (PHM) is presented in (Zio, 2022) that
discuss the future needs in fault diagnosis research, e.g. de-
ployment of diagnosis systems in industrial applications. The
importance of training data for data-driven fault diagnosis and
how this affects the selection of method is discussed in (Dai &
Gao, 2013). These mentioned surveys give a good overview
of different fault diagnosis methods. However, there is lim-
ited focus on the underlying differences between different
fault diagnosis methods related to their design objectives.

To address the limitations of classical model-based and data-
driven fault diagnosis methods, several papers have proposed
hybrid diagnosis system solutions. In early work, see e.g.
(Becraft, Lee, & Newell, 1991; Senjen, De Beler, Leckie, &
Rowles, 1993), hybrid diagnosis systems have been proposed
combining neural networks (NN) as input to expert systems.
Another proposed solution is to use physically-based meth-
ods to generate features that are fed to a data-driven clas-
sifier, see e.g. (Luo, Namburu, Pattipati, Qiao, & Chigusa,
2009; Yan, Ji, & Shen, 2017; Destro, Facco, Munoz, Bezzo,
& Barolo, 2020). The proposed methods are evaluated using
different case studies, but there is little motivation for why
the selected diagnosis system design is chosen based on given
performance requirements.

The authors in (Mylaraswamy & Venkatasubramanian, 1997)
propose a hybrid fault diagnosis framework combining e.g.
digraphs, observers, trend analysis, expert rules, and NN,
based on the conclusion that no diagnosis approach is good
for everything. To deal with conflicts in diagnosis outputs, a
voting scheme is proposed based on the confidence of each
method. Different decision-making strategies for collabo-
ration between heterogeneous fault diagnosis methods are
evaluated in (Ghosh, Ng, & Srinivasan, 2011). The results
show that utility-based methods (e.g. majority-voting) work
if all diagnosis methods are equally good but evidence-based
methods (e.g. Bayesian and Dempster-Shafer) work better if
there is a bigger diversity in performances of different diag-
nosis methods. Issues with limited training data from faults
are discussed but not considered explicitly in the study. In
(Yan et al., 2017), an extended Kalman filter (EKF) is used
to generate more stationary features, compared to raw sensor

data, that are fed into a recursive one-class SVM (1SVM) to
detect faults in a chiller (HVAC). EKF is also used in (Destro
et al., 2020) to generate features (estimated states) combined
with actuator and sensor signals as input to a PCA classifier
to diagnose a process system. The authors state that the pro-
posed method has difficulties with out-of-distribution data.

Several papers propose model-based residuals to generate
features as input to data-driven classifiers, see e.g. (Jung &
Sundström, 2017; Purbowaskito, Lan, & Fuh, 2024; Lund-
gren & Jung, 2022). In (Yu, Shields, & Daley, 1996), the
output from a model-based parity space is fed to a set of
shallow NN used as a one vs rest classifier for each fault.
In (Svärd, Nyberg, Frisk, & Krysander, 2013), model-based
residuals are evaluated using a Kullback-Leibler divergence-
based change detection method. Several authors use signed
digraphs to identify subsets of signals to train a set of PLS-
based residuals to monitor different sub-models, see e.g.
(Lee, Han, & Yoon, 2004; Lee, Tosukhowong, Lee, & Han,
2006; Ahn et al., 2008). In (Garcia-Alvarez, Bregon, Pulido,
& Alonso-Gonzalez, 2023), residuals are fed to a PCA model.
Fault isolation is done by identifying which residuals made
the PCA detect an anomaly and then performing Consistency-
Based Diagnosis (De Kleer & Williams, 1987) based on the
residuals. Experiments showed that the hybrid approach out-
performs each approach individually but also when compared
with a black-box NN approach.

The authors in (Tidriri, Tiplica, Chatti, & Verron, 2018) pro-
pose a Bayesian Network-based information fusion of model-
based structured residuals and discriminant analysis. The au-
thors in (Atoui, Cohen, Verron, & Kobi, 2019) propose a
Bayesian Network (BN) for fault diagnosis that combines dis-
crete and continuous variables. It handles unknown faults by
detecting when an observation deviates too much from data.
The use of structural residuals and BN for fault isolation us-
ing a fault signature matrix is proposed in (Atoui & Cohen,
2021) to address the problem with limited training data. A
BN is also proposed in (Wang et al., 2023) to fuse residuals,
knowledge-based, and data-driven features to perform fault
diagnosis. The authors in (Khorasgani, Farahat, Ristovski,
Gupta, & Biswas, 2018) propose a unifying framework for
model-based and data-driven methods. The framework dis-
cusses the use of both real data and simulation data for fea-
ture extraction using model-based methods, domain knowl-
edge, and data-driven techniques. The features are then fed
to supervised and unsupervised methods.

Surveys of hybrid fault diagnosis methods can be found
in e.g. (Wilhelm, Reimann, Gauchel, & Mitschang, 2021;
Tidriri, Chatti, Verron, & Tiplica, 2016; Goupil, Chanth-
ery, Travé-Massuyès, & Delautier, 2022). The authors in
(Wilhelm et al., 2021) discuss different ways of hybrid de-
signs focusing on series and parallel architectures. Combin-
ing different methods in series is claimed to utilize the pros
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and cons of each approach. Parallel solutions are claimed
to be more robust since there is less risk that an error early
in a serial solution would propagate and reduce the perfor-
mance of others. There is no proposal of a given framework,
but the authors present different approaches. Several papers,
e.g. (Tidriri et al., 2016) and (Frisk et al., 2022), compare
model-based diagnosis and data-driven diagnosis and discuss
the advantages of hybrid diagnosis system designs combining
both models and data.

A comparison of six different diagnosis system designs sub-
mitted to a Wind turbine FDI competition is presented in
(Odgaard & Stoustrup, 2012). The authors in (Feiyi & Jin-
song, 2015) reviewed multiple proposed diagnosis system
designs developed for the NASA Advanced Diagnostics and
Prognostics Test-bed (ADAPT). In (Jung et al., 2015), it was
shown that the design objectives of different model-based di-
agnosis system designs have implications on the assumptions
made about observations that can be explained by the dif-
ferent fault modes. A review of public process monitoring
benchmarks and proposed solutions are presented in (Melo,
Câmara, Clavijo, & Pinto, 2022).

With respect to previous works, the contribution here is to un-
derstand the connection between diagnosis systems and mod-
eling assumptions about fault behavior. For a diagnosis sys-
tem developer, it is important to understand the impact of dif-
ferent design choices when implementing a diagnosis system
for a given application.

3. FAULT DIAGNOSIS DEFINITIONS

Before analyzing the relation between assumptions about
faults and diagnoses, a set of general definitions for fault di-
agnosis is presented describing the relationship between ob-
servations and faults. Then, a set of common assumptions
about faults are defined using the general definitions.

3.1. Fault Modes and Observation Sets

A diagnosis system is used to monitor a system to detect and
diagnose abnormal behavior. In principle, a diagnosis sys-
tem can be interpreted as a function D(z) which outputs a
set of diagnosis candidates (fault hypotheses) D ⊆ F given a
set of observations z. The observations consist of sensor and
actuator signals but could also be input from a technician or
operator. If many diagnosis candidates can explain a given
observation, each diagnosis d ∈ D can also have a value that
represents a ranking of how likely it is with respect to the
other diagnoses which will be discussed later.

Let {f1, f2, ...} denote a set of faults that could be present in
the system. Since several faults could be present at the same
time, the term fault mode Fi is used to describe the system
state and is defined as a set of faults that is present in the
system. A fault mode could be a single fault Fi = {f1} but

Table 1. The list of possible observations and corresponding
diagnoses in the switch-lamp example.

Observations
Switch (S) Lamp (L) Diagnoses

Open Off NF, f1, f3, {f1, f3}, {f2, f3}
Open On f2

Closed Off f1, f2, f3, {f1,f3}, {f2,f3}
Closed On NF, f2

also multiple faults Fi = {f1, f2, . . .}. The fault-free mode
when no faults are present is denoted NF (No Fault). Let
F = {NF, F1, F2, . . .} denote the set of all fault modes that
the system can be in.

Let OFi
(z) denote the set of observations z from the system

that can be explained by fault mode Fi. The set of observation
z of the fault-free mode is denoted ONF(z). Note that the
OFi

(z) describes the true set of observations that could be
measured from any realization of Fi and is a system property.
Based on the observation sets, it is possible to define fault
detectability and isolability.

Definition 1 (Fault isolability) A fault mode Fi is isolable
from another fault mode Fj if OFi

\ OFj
6= ∅, i.e. there exist

an observation z that can be explained by Fi but not Fj . If Fi

is isolable from the fault-free mode NF, i.e. OFi \ ONF 6= ∅,
then Fi is said to be detectable.

Fault isolability defines the conditions when Fi is isolable
from Fj . However, if Fi is isolable from Fj it does not guar-
antee that Fi is isolable for all z ∈ OFi

and from all fault
modes Fj ∈ F . Note that fault isolability is not a symmetric
property, i.e., if Fi is isolable from Fj , it does not mean that
Fj is isolable from Fi.

To illustrate the relationship between different observations
and diagnoses, a small example is considered.

Example 1 Consider a system consisting of a lamp that is
controlled by a switch. The possible observations are that the
lamp can be on or off and the switch can be open or closed.
The potential fault modes are that the switch can be ok, stuck
open (f1), or stuck closed (f2) and that the lamp can be ok or
broken (f3). The mode when both the switch and lamp are ok
is referred to as NF (No Fault). The set of observations and
corresponding diagnoses is listed in Table 1. Brackets are
used to define fault modes where multiple faults are present.
Table 2 shows the observation sets for fault modes f1 and f2.
If the switch (S) is closed and the lamp (L) is on both f1 and
f2 are diagnosis candidates. If the switch is open and the
lamb is off f1 is a diagnosis but f2 is not and f2 is isolable
from f1 if the lamp is on. �

Even for this small example, several diagnoses can be ex-
plained by each observation. In general, e.g. if there are con-
tinuous signals, it is not feasible to list all observations.
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Table 2. The list of possible observations for the diagnoses
{f1} and {f2} in the switch-lamp example.

Diagnoses Observation set
f1 {S Open, L off}, {S Closed, L off}
f2 {S Open, L on}, {S Closed, L off},

{S Closed, L on}

3.2. Assumptions when Modeling Fault Modes

The diagnosis system models the observation set, i.e., which
observations z that result in Fi being a diagnosis candidate.
Consider a diagnosis system D(z) and a mode Fi ∈ F . The
set of observations where Fi is a diagnosis candidate is de-
noted by ÔFi

= {z|Fi ∈ D(z)}. If the models of the obser-
vation sets are inaccurate, there is a risk that the true diagnosis
is either falsely rejected, i.e. if there are observations z such
that z 6∈ ÔFi

and z ∈ OFi
, or that the number of diagnoses is

large because false diagnoses are not properly rejected.

Design principle 1, i.e., no mode should be falsely rejected,
implies that

OFi
⊆ ÔFi

(1)

for all modes Fi ∈ F . A diagnosis system with this prop-
erty is said to be complete since all diagnoses are diagnosis
candidates.

Design principle 2, i.e., all diagnosis candidates should be a
diagnosis implies that

ÔFi ⊆ OFi (2)

for all modes Fi ∈ F . A consequence of (1) and (2) is that
these sets should be equal for all modes, i.e., the objective
when designing a diagnosis system is to model OFi as ac-
curately as possible for all fault modes Fi. In noisy envi-
ronments, the observation sets can be replaced with proba-
bility distributions transferring property (1) to achieve a low
false alarm probability and (1) to achieve a low missed detec-
tion probability. Typically, there is a trade-off between a low
false alarm probability and a low missed detection rate and
in consistency-based diagnosis low false alarm probability is
prioritized, i.e. similar to (1), not to falsely reject diagnoses.

3.2.1. Approximating the Set of Fault Modes

One assumption is that all fault modes F that the system can
be in are modeled by the diagnosis system, called the closed-
world assumption. If F̂ is the set of considered modes in a
diagnosis system the assumption can be formalized as:

Assumption 1 (Closed-world) The modeled set of fault
modes is equal to the set of all fault modes, i.e., F̂ = F .

Under the closed-world assumption, each observation is
mapped to at least one known fault mode, i.e., there are no
other possible fault modes than the modes in F̂ . This means

that the complete diagnosis system always outputs at least one
fault mode, the true one, from F̂ as a diagnosis candidate.

Different methods are used to systematically identify poten-
tial faults that could occur in a system, e.g. FMEA (Spreafico,
Russo, & Rizzi, 2017) and FTA (Ruijters & Stoelinga, 2015).
Still, it can be difficult to identify all potential faults or it is
not possible to properly model all fault modes resulting in
observations z such that z 6∈ ÔFi

for all Fi, i.e., D(z) = ∅.

Multi-class classifiers, e.g. Random Forest (Breiman, 2001),
and diagnosis algorithms, see e.g. (De Kleer & Williams,
1987), that return diagnoses based on F̂ and do not consider
the unknown fault scenario are based on the closed-world as-
sumption. Methods that do not rely on the closed-world as-
sumption are, e.g., open-set classifiers can return that data can
come from an unknown class, e.g. (Scheirer et al., 2014) or
fault isolation logics that can return an unknown fault as a
diagnosis, see e.g. (Jung et al., 2018).

Since faults are rare events, the set of diagnoses can be re-
duced by assuming that at most one fault is present in the
system, i.e. no multiple faults. This means that the computed
diagnosis candidates only consist of single faults which is re-
ferred to as the single-fault assumption:

Assumption 2 (Single-fault) The modeled set of fault
modes F̂ only includes modes representing single faults.

The single-fault assumption is common in both model-based
and data-driven diagnosis. In model-based diagnosis, the
single-fault assumption is often used to reduce the number of
diagnosis candidates while in data-driven diagnosis, e.g. su-
pervised learning, it is often implicit when training classifiers
using data from single-faults only (Atoui & Cohen, 2021).

3.2.2. Approximating the observation sets

Other approximations are directly related to how the diag-
nosis system approximates the observation sets of different
fault modes. Some types of faults are expected to manifest in
a specific number of ways.

Assumption 3 (Limited ways of fault manifestation)
Each fault has a limited number of ways it could manifest or
evolve in the system.

An example is faults that occur abruptly in the system. This
assumption is used in diagnosis systems utilizing signal tran-
sient information to identify the fault. In (Mosterman &
Biswas, 1999), transient information patterns are identified
and compared to different fault manifestations to isolate the
fault. This assumption is also found in data-driven methods
when it is assumed that training data is representative of fault
modes to be classified, e.g. fault magnitudes and operating
conditions.

There are some assumptions here that are related to fault man-
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ifestation that restrict the possible observations that can be
explained by each fault mode.

Assumption 4 (Strong discriminability) Two modes Fi

and Fj are strongly discriminable from each other if

OFi ∩ OFj = ∅ (3)

If the observation sets OFi
and OFj

are strongly discrim-
inable, then each observation z can only be explained by max-
imally one of the two fault classes. The term strong discrim-
inability is used in (Travé-Massuyès, 2014) but is also applied
in, e.g., multi-class classifiers returning the most likely class
for a given observation. If the diagnosis system is designed
such that strong discriminability holds for all pairs of fault
modes in F̂ , then each observation z is mapped to maximally
one diagnosis candidate. This is the case in many data-driven
classifiers which outputs the most likely class for a given ob-
servation. A special case of strong discriminability that is
sometimes used in model-based diagnosis is the assumption
that a fault in the system will trigger all fault detectors that
are sensitive to that fault, see e.g. (Travé-Massuyès, 2014).

Assumption 5 (Exoneration) All fault modes are strongly
discriminable from the fault-free mode, i.e.

OFi
∩ ONF = ∅ ∀Fi (4)

This means that a fault is always detectable, i.e. the missed
detection rate is negligible. The exoneration assumption is
valid in systems where the impact of faults is significant com-
pared to model uncertainties and noise. However, exoneration
can result in falsely rejecting the true diagnosis if the fault is
small or if the fault detectors have varying detection perfor-
mance, see e.g. (Sanchez, Escobet, Puig, & Odgaard, 2015).

4. FEATURE GENERATION

In general, it is too difficult to design a diagnosis system that
directly maps the observations to diagnoses, i.e. modeling
the sets OFi

directly using z. A common approach is to use
some type of signal processing or filtering to generate fea-
tures to simplify the diagnosis process. Since many diagnosis
systems contain a feature generation step it is necessary to
discuss how assumptions about the modeled feature outputs
relate to assumptions about the observation sets. Some main
reasons for feature generation are:

• System dynamics complicates fault detection using only
raw observations z.

• The complex relation between faults and observations z
complicates fault isolation.

• Some faults are affecting the dynamic behavior of the
system or introducing noise.

• The number of signals is large making it dimensionally
difficult to model the observation sets. Strong correla-

tions between signals could be used to reduce the feature
space compared to the original observation space without
losing information.

Therefore, a feature generation step is performed to map the
observations z to a feature space r where it is easier to com-
pute diagnoses. Feature generation can be performed in sev-
eral steps, e.g. first generating residuals and then processing
the residual output to extract features (Frisk et al., 2022).

OF2OF1

OF3

Feature 1

Feature 2

Feature 3

ΩF2

ΩF1

ΩF3

z r

Figure 1. Mapping observations to feature space.

Let ΩFi
(r) denote the set of feature output combinations r =

r(z) that can be explained by fault mode Fi

ΩFi(r) = {r(z)|z ∈ OFi} (5)

The feature set maps observations to feature space r : OFi →
ΩFi and Ω̂Fi denotes the modeled set. Note that the set of
features might not map all information that is available in the
observation space and thus lose fault diagnosis properties.

Diagnosability properties, such as detectability and isolabil-
ity, can also be defined in feature space Ω. The same assump-
tions can be made for the feature space, such as strong dis-
criminability and exoneration. However, assumptions made
about ΩFi

have implications on OFi
. For example, if ΩFi

and ΩFj
are strongly discriminable, it implies that OFi

and
OFj are also strongly discriminable (Jung et al., 2015):

ΩFi
∩ ΩFj

6= ∅ → OFi
∩ OFj

6= ∅ (6)

This means, e.g., that designing a diagnosis system solution
that only returns the most likely fault mode as a diagnosis as-
sumes that there is no overlap in possible observations from
different fault modes. Note that a design goal of feature gen-
eration is to transfer the detection and isolation performance
in the observation space to the feature space. However, defin-
ing ΩFi

given r for each fault mode Fi is still necessary, e.g.
by estimating it from data from that fault class.

There are other design objectives when generating features
that can be used to model ΩFi

without the need for data from
Fi. One feature property that is commonly used in model-
based diagnosis is fault decoupling, i.e., designing features
that are insensitive to certain faults.

Definition 2 (Fault decoupling) For a given subset of fea-
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tures rs ⊆ r, a mode Fj is said to be decoupled if

ΩFj
(rs) ⊆ ΩNF(rs) (7)

i.e., a decoupled fault mode is not detectable with rs.

Fault decoupling can be achieved, e.g., by designing
residuals that monitor different subsystems, see e.g.
(Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003).
Another approach to decouple sensor faults is to generate
a feature without using that signal, or modeling the fault to
be decoupled and estimate it using an observer, to make the
residual insensitive to the fault (Commault, Dion, Sename, &
Motyeian, 2002).

4.1. Residual Generators

One reason for discussing residuals specifically as a feature is
that they are central in model-based diagnosis to achieve fault
decoupling for fault isolation, referred to as structured resid-
uals. A residual generator is designed as a function of obser-
vations that is (asymptotically) zero in the nominal case. A
simple example of a residual generator is r = y− ŷ(u) where
the model prediction ŷ is computed based on some actuator
signal u. An advantage of residuals is that they are approx-
imately zero in the nominal case since the system dynamics
are filtered out which simplifies anomaly detection.

The ability to design residual generators requires redundancy.
When a mathematical model is available, analytical redun-
dancy is evaluated as a model property and refers to the abil-
ity to derive a mathematical expression describing the re-
lationship between different observations (and their deriva-
tives). From a data-driven perspective, redundancy relates to
the intrinsic dimension of data (Camastra & Staiano, 2016),
i.e., that observations from the fault-free system are located
on a low-dimensional manifold in observation space, see e.g.
(Mohammadi, Krysander, & Jung, 2022).

Designing features, such as residuals, where faults are decou-
pled is central for consistency-based reasoning and fault iso-
lation when training data from faults is not available. The key
is that fault hypotheses containing decoupled faults can be re-
jected if a residual is detecting a fault. However, this requires
accurate models to avoid false alarms. Because of model in-
accuracies a residual can be nonzero if there is a fault but also
if the model inaccuracies are too significant. One example is
data-driven models which do not generalize well for out-of-
distribution data. This relates to the concept of aleatoric and
epistemic uncertainty (Abdar et al., 2021). Aleatoric uncer-
tainty refers to process and measurement noise that cannot be
captured by the model, while epistemic uncertainty refers to
the generalizability of the model. The validity of the feature
model for a given observation z is an important aspect when
reasoning about the cause of detected anomalies, see (Jung,
Krysander, & Mohammadi, 2023).

5. CONSTRUCTION OF DIAGNOSIS SYSTEMS

The strong connection between assumptions made in differ-
ent fault diagnosis methods and diagnoses, adds complexity
when designing hybrid diagnosis systems. A general problem
when combining methods is how to handle potential ambigu-
ities or contradictions between the methods when computing
diagnoses, especially if the two methods are based on dif-
ferent assumptions about faults. Two general hybridization
principles are mentioned in, e.g., (Wilhelm et al., 2021): se-
rial and parallel design but also combinations of both.

5.1. Series and Parallel Hybrid Diagnosis

Hybrid diagnosis systems where the output from one method
is used as input in another are referred to as series hybrid.
One example is when a set of model-based residuals is com-
puted and then fed as input to a data-driven classifier to gen-
erate diagnoses (Atoui & Cohen, 2021), or when the residual
output is processed to extract a new set of features (Frisk et
al., 2022). Series hybrid diagnosis systems follow the prin-
ciple discussed in the previous section where one method is
used for feature generation to map the observation set of a
feature set that is easier to process, e.g. by a data-driven clas-
sifier. Model-based diagnosis systems often consist of a se-
ries of methods where the output from one method is fed to
the next method, e.g. a set of residual generators where the
outputs are fed to a change detection or anomaly detection
step, followed by a fault isolation logic, see Figure 2.
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Figure 2. Fault detection and isolation.

Diagnosis systems where different methods are evaluated in
parallel are referred to as parallel hybrid. A decision fusion
method is needed to combine the results from each method
to compute the diagnoses. The decision fusion method can
compute the global diagnosis based on the assumptions made
on the observation sets, or the feature sets. Conflicting state-
ments from different methods, e.g., if r1(z) ∈ ΩFi

(r1) but
r2(z) 6∈ ΩFi

(r2) then Fi is a diagnosis given r1 but not given
r2. An example of a fusion method is the use of Bayesian
Networks to compute the most probable set of diagnoses
given the individual outputs, see e.g. (Tidriri et al., 2018;
Atoui et al., 2019; Wang et al., 2023). Then, the mapping
from the observations to the diagnoses is determined by how
the fusion strategy is calibrated. Another option is to model
the sets ΩFi

(r) in such a way that conflicts are omitted.
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5.2. Computation of Diagnoses

Computing diagnosis candidates taking into consideration
model uncertainties and non-representative training data is
nontrivial if a constraint is to avoid falsely rejecting the true
diagnosis, i.e. the diagnosis system should be complete. Two
principles considered here are rejection and ranking of di-
agnosis candidates. Rejection is the ability to narrow down
the set of candidates by removing diagnoses that cannot ex-
plain the observations, and ranking is a way to order the di-
agnoses in a priority list based on which diagnosis is more
likely, without rejecting any diagnoses. Ranking diagnosis
candidates is not as strong as rejecting diagnoses but gives
useful information when prioritizing which sets of actions or
counter-measures to take. Some methods can be used to re-
ject diagnosis candidates while other approaches cannot due
to limited information.

Rejection of Diagnosis Candidates As previously dis-
cussed, computing reliable diagnoses requires knowledge of
how the diagnosis system approximates ÔFi

for each fault
mode. If ÔFi

⊇ OFi
, then it is possible to reliably reject Fi

when z 6∈ ÔFi
since it is guaranteed that z 6∈ OFi

. How-
ever, achieving this is not trivial especially since this would
require training data that is representative of all realizations
of each fault to model the observation sets of all fault modes.
However, if there are features, e.g. structured residual, where
Fi is decoupled, then if r 6∈ ΩNF also means that r 6∈ ΩFi

.
In that case, it is sufficient to use nominal data to determine
when to reject diagnoses. However, this would then require
some other information to generate the feature where the fault
is decoupled, e.g. a mathematical model of the system.

Ranking of Diagnosis Candidates When it is not possible
to reliably reject diagnoses, e.g. when training data is not
representative of the different fault classes, a second approach
is to rank them using some quantitative measure. This means
that all fault modes are plausible, but a ranking is used to
prioritize how likely each diagnosis candidate is. Ranking
can be done in different ways. One example is to rank each
diagnosis independently of other diagnoses. This can be done
when ÔFi

⊆ OFi
. This can be achieved, e.g., by using a

one-class classifier to model the data support using data from
that fault mode (Jung et al., 2018). Another advantage of
using one-class classifiers to model each fault mode is that
the training of the models will not suffer from imbalanced
training data. Also, as new training data becomes available, it
is sufficient to update the models of the fault modes that are
represented in the new data, see e.g. (Jung et al., 2018).

A binary or multi-class classifier does not model each fault
mode individually but relative to the other modes. Since such
classifiers always return the most likely diagnosis, even if
training data from two fault modes overlap or if test data is

significantly different from training data, there is no guaran-
tee that the modeled observation sets are over-estimations or
under-estimations of the true observation set. Thus, the out-
put from such a model only gives a relative ranking between
the two diagnoses.

6. A PROPOSED HYBRID DIAGNOSIS SYSTEM ARCHI-
TECTURE

Because of the strong connection between assumptions and
design choices, a baseline diagnosis system design can assist
in the development process and avoid misclassifications due
to conflicts between methods used in the diagnosis system.
Here, a generic diagnosis system architecture is proposed, in-
spired by (Jung et al., 2018), to systematically combine differ-
ent types of fault diagnosis methods, where the risk of falsely
rejecting the true diagnosis is low.

The proposed architecture, see Figure 3, contains both series
and parallel hybrid components. In the design, there is a fea-
ture evaluation step. The generated features, e.g. residuals,
are fed to a fault detection step. When a fault is detected,
the isolation step is activated which consists of a diagnosis
rejection part and a fault ranking part.

6.1. Feature Evaluation and Fault Detection

The fault detection step uses a set of anomaly classifiers, here
referred to as fault detectors, where each anomaly classifier
can be based on either single or multiple features. The pur-
pose of the fault detection step is to detect abnormal system
behavior, i.e. to reject the fault-free mode. If all features that
are fed to a fault detector, are insensitive to a subset of faults,
then that fault detector can be used to reject diagnoses. This
means that all features that are used by a fault detector must
be insensitive to a fault for the fault detector to be insensitive
to the same fault (Jung et al., 2018). The set of features is
designed to maximize fault detection performance. However,
each fault detector is calibrated to fulfill requirements on fault
alarm rate. Note that the detection step is separated from the
isolation step to handle different performance requirements
regarding detection and isolation performance. Since it is of-
ten crucial to avoid false alarms, it can be difficult to detect
small faults using a sample-by-sample detection approach.
Time-series analysis and statistical change detection methods
such as the CUSUM test can be used to improve the detection
of (small) faults over time, see e.g. (Gustafsson, 2007).

6.2. The Fault Isolation Process

If a fault is detected then the isolation step is activated. The
fault isolation process consists of a fault isolation logic, that is
used to reject diagnosis candidates and a data-driven ranking
of the diagnosis candidates. The fault isolation logic requires
fault detectors that are insensitive to faults and the fault rank-
ing step requires training data from fault modes.
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6.2.1. Diagnosis Rejection using Fault Isolation Logic

If there are fault detectors that are insensitive to some fault
modes, and a fault has been detected with one of these fault
detectors, this information is then fed to a consistency-based
fault isolation logic (CBD), see (De Kleer & Williams, 1987).
The fault isolation logic rejects diagnoses based on the fault
sensitivity of the features that detect faults. Diagnoses are re-
jected that cannot be explained by the decoupled fault modes.
An advantage is that CBD will not reject the true diagnosis
if there are no false alarms, i.e. there is no exoneration or
strong discriminability assumption (Jung et al., 2018). It can
identify both single-fault and multiple-fault diagnoses with-
out the need for training data from faults since it is sufficient
to model the feature’s nominal distribution. However, CBD
is conservative since the number of diagnosis candidates can
be large. Note that if there are no fault detectors where faults
are decoupled, no diagnoses are rejected. If there are features
without fault decoupling properties, these can still be fed to
the CBD. However, they will not reject any diagnoses if they
detect abnormal behavior (except the diagnosis that the sys-
tem is fault-free). Thus, there is no need to treat the features
differently in the diagnosis system design.

6.2.2. Diagnosis Ranking using One-Class Classifiers

Based on the computed diagnoses, each candidate is ranked
using the feature outputs in the hybrid diagnosis architec-
ture. The ranking of the diagnoses is done using data-driven
one-class classifiers trained on available data from each fault
mode to model its data support. The fault-free mode is not
modeled here since this step is not activated before abnormal
behavior is activated. Note that multi-class classifiers are not
used since they are based on both the closed-world assump-
tion and the strong discriminability assumption. This means
that the classifiers cannot identify when there is an unknown
fault scenario but also if there are multiple classifiers used to
rank the diagnoses, different classifiers likely identify differ-
ent faults leading to diagnosis conflicts.

Modeling each fault mode individually using anomaly classi-
fiers, e.g. 1SVM, makes it possible to identify likely unknown
fault scenarios and abnormal behavior that have not been ob-
served before (Scheirer et al., 2014). It also allows for identi-
fying multiple diagnoses that can explain the observations if
training data from different fault modes are overlapping. An-
other advantage is that imbalanced data is not an issue dur-
ing training and that it is possible to incrementally learn the
data support of each fault mode individually as new data are
available without having to retrain all classifiers. Note that,
in general, if no training data from a fault mode is available,
it is not possible to rank that diagnosis. If there are features
where faults are decoupled it is possible to design classifiers
to rank multiple-fault modes, using only training data from
single faults (Jung et al., 2018).

The output of the diagnosis system is a set of diagnosis can-
didates and a ranking of each candidate. Multiple-fault diag-
nosis is handled by the CBD fault isolation logic. However,
ranking multiple-fault diagnoses, in general, requires training
data from multiple-fault scenarios to model the multiple-fault
mode. In (Jung et al., 2018), it is shown that if there are fea-
tures that are insensitive to faults, training data from single-
faults is sufficient by ranking each fault individually in the
multiple-fault diagnosis when the other faults are decoupled.

Feature
generation

Fault
detection

Fault
isolation

Diagnosis
ranking

z r al
ar

m

diagnoses

+

R
an

ke
d

di
ag

no
se

s

Figure 3. Hybrid diagnosis system design.

6.3. Comparison to Conventional Diagnosis Systems

The proposed architecture has been evaluated in (Jung et al.,
2018) using a set of model-based residuals to evaluate data
from an internal combustion engine. However, the selected
architecture has not been motivated from the assumption-
based perspective. Here, it is also motivated that a wider
range of feature generation techniques can be used as long as
their fault decoupling properties are taken into consideration.

A central part of the proposed architecture is the distinction
between generated features where fault modes are decoupled
and those where fault decoupling is not achieved because
fault decoupling allows for rejecting diagnoses. Otherwise,
the diagnosis principle is to rank the remaining diagnoses.
Thus, the proposed architecture shows how to combine, e.g.,
model-based methods and data-driven methods when train-
ing data is limited. An interesting property of the proposed
architecture is that classical model-based diagnosis systems
or data-driven fault diagnosis designs become special cases
depending on what type of information is available in the de-
sign process. If the ranking module is not available (e.g. if no
training data from faults is available) and there are features
that are insensitive to some faults, e.g. structured residuals,
the diagnosis system design becomes a typical model-based
diagnosis system, see e.g. (Gao et al., 2015), where diagno-
sis candidates are derived from isolation logics. On the other
hand, if no faults are decoupled in any of the features, the
fault isolation logic will not reject any diagnoses. Then, the
diagnosis system becomes a typical data-driven fault classi-
fier where the set of features is fed to one or more classifiers
to identify the most likely fault class (Dai & Gao, 2013).
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7. DISCUSSION AND CONCLUSIONS

There is a continuous scientific development of fault diag-
nosis methods. Still, design principles and guidelines are
needed to support the implementation of diagnosis system
solutions in real applications. Even though it is convenient
to treat the fault diagnosis problem as a generic classification
problem, different complicating factors require careful con-
sideration when selecting an appropriate diagnosis system de-
sign. A general guideline to design a diagnosis system is pro-
posed which can both reject and rank diagnoses based on the
properties of the generated features. It is not claimed that the
proposed architecture is always the optimal choice. However,
having this diagnosis assumption-based perspective simpli-
fies the design of hybrid diagnosis systems since it gives a
general principle of how to utilize different diagnosis meth-
ods, such as classical model-based and data-driven methods,
to compute diagnoses. The proposed framework shows that
when categorizing fault diagnosis methods it is not model-
based vs data-driven that is important. Instead, an important
aspect is how observation sets for different fault models are
modeled where fault decoupling is important to reject diag-
noses when training data from faults is limited.

As seen in the literature, residuals are popular as features for
fault diagnosis, especially the ability to filter out system dy-
namics and isolate faults. Residuals are also natural when
utilizing physical insights together with machine learning in
hybrid diagnosis systems. There is a need for methods to de-
sign data-driven residual generators that can decouple faults
when a system model is not available. More investigations
are needed around the connection between model properties,
such as analytical redundancy, and data properties, such as the
intrinsic dimension of data, to bridge the theory and methods
developed in the model-based diagnosis community to data-
driven fault diagnosis to deal with incomplete training data
and unknown faults.
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Svärd, C., Nyberg, M., Frisk, E., & Krysander, M. (2013).
Automotive engine fdi by application of an auto-
mated model-based and data-driven design methodol-
ogy. Control Engineering Practice, 21(4), 455–472.
doi: 10.1016/j.conengprac.2012.12.006
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