References
Cheng, S., Azarian, M., & Pecht, M. (2010). Sensor Systems for Prognostics and Health Management. Sensors, 10(1424-8220), 5774-5797.
Du, X., & Zhang, Y. (2018). Development of Robust Fault Signatures for Battery and Starter Failure Prognosis. Annual Conference of the PHM Society. Vol. 10. No. 1.
Emadi, A., Williamson, S. S., & A. Khaligh. (2006). Power electronics intensive solutions for advanced electric hybrid electric and fuel cell vehicular power systems. IEEE Trans. Power Electron., 21(3), 567- 577.
G., S. M., & Nikdel, M. (2014). Various battery models for various simulation studies and applications. Renewable and Sustainable Energy Reviews, 32(1364-0321), 477-485.
Hasan, M. K., Mahmud, M., Habib, A. A., Motakabber, S., & Islam, S. (2021). Review of electric vehicle energy storage and management system: Standards, issues, and challenges. Journal of Energy Storag, 41, 102940.
Hou, R., Magne, P., Bilgin, B., & Emadi, A. (2015). A topological evaluation of isolated DC/DC converters for auxiliary power modules in electrified vehicle applications. Proc. IEEE Appl. Power Electron.Conf. . Expo.
Khan, S., & T. Yairi. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241-265.
Lam, L., Ozgun, H., Lim, O., Hamilton, J., Vu, L., Vella, D., & Rand, D. (1995). Pulsed-current charging of lead/acid batteries - a possible means for overcoming premature capacity loss. Journal of Power Sources, 215-228.
Mu, H., Liu, J., Ewing, R., & Li, J. (2021). Human Indoor Positioning via Passive Spectrum Monitoring. 2021 55th Annual Conference on Information Sciences and Systems (CISS), (pp. 1-6). Baltimore, MD.
Naha, A., Khandelwal, A., Agarwal, S., Tagade, P., Hariharan, K. S., Kaushik, A., . . . Oh, B. (2020). Internal short circuit detection in Li-ion batteries using supervised machine learning. Scientific Reports, 10(1), 1301.
Ng, S. S., Xing, Y., & Tsui, K. L. (2014). A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118(0306- 2619), 114-123.
Olabi, A., Abdelghafar, A. A., Soudan, B., Alami, A. H., Semeraro, C., Radi, M. A., . . . Abdelkareem, M. A. (2024). Artificial neural network driven prognosis and estimation of Lithium-Ion battery states: Current insights and future perspectives. Ain Shams Engineering Journal, 15(2), 102429.
Samanta, A., Chowdhuri, S., & Williamson, S. (2021). Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. Electronics , 10, 1309.
Wang, C., Zheng, P., & J. Bauman. (2023). A Review of Electric Vehicle Auxiliary Power Modules: Challenges, Topologies, and Future Trends. IEEE Transactions on Power Electronics, 38(9), 11233- 11244.
Xing, Y., Ma, E. W., Tsui, K.-L., & Pecht, M. (2013). An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability, 53(6), 811-820.
Zhao, G., Zhang, G., & Ge, Q. (2016). Research Advances in Fault Diagnosis and Prognostic Based on Deep Learning. IEEE Prognostics and System Health Management Conference. Chengdu, China.
Zhou, W., Zheng, Y., Pan, Z., & Lu, Q. (2021). Review on the Battery Model and SOC Estimation Method. Processes, 9, 1685.