Data-driven Detection of Engine Faults in Infrequently-driven Ground Vehicles
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
We investigated the detection of engine faults in infrequently driven ground vehicles using data-driven methods based on neural network autoencoders. Multivariate time-series data from the infrequently driven vehicles under investigation had limited coverage of operating conditions. Hence, a considerable part of this work focused on identifying suitable vehicles, relevant signals, and pre-processing the data. We trained autoencoder models on eight vehicles with known faults and detected faults in six. Four of the faults were detectable under idle conditions and four were detectable under driving conditions. Model evaluations required human inspection to distinguish fault detections from other anomalies. We detail our procedures for pre-processing, model development, and post-processing, and we include a discussion on our interpretations of the model results.
How to Cite
##plugins.themes.bootstrap3.article.details##
Anomaly detection, Autoencoders, Neural networks, Engine faults, Ground vehicles, Fleet
health management society.
Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. In Ijcai (Vol. 1, pp. 518–523).
Yan, W., & Yu, L. (2015). On accurate and reliable anomaly detection for gas turbine combustors: A deep learning approach. In Proceedings of the annual conference of the prognostics and health management society
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.