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ABSTRACT

We investigated the detection of engine faults in infrequently
driven ground vehicles using data-driven methods based on
neural network autoencoders. Multivariate time-series data
from the infrequently driven vehicles under investigation had
limited coverage of operating conditions. Hence, a consid-
erable part of this work focused on identifying suitable vehi-
cles, relevant signals, and pre-processing the data. We trained
autoencoder models on eight vehicles with known faults and
detected faults in six. Four of the faults were detectable un-
der idle conditions and four were detectable under driving
conditions. Model evaluations required human inspection to
distinguish fault detections from other anomalies. We detail
our procedures for pre-processing, model development, and
post-processing, and we include a discussion on our interpre-
tations of the model results.

1. INTRODUCTION

A fault detection system deployed on a ground vehicle pro-
cesses data from vehicle sensors and alerts appropriate stake-
holders (e.g., maintainers, operators, or logisticians) about a
developing fault. Early detection saves resources by reduc-
ing unnecessary maintenance, reducing unplanned downtime,
and lessening the need for redundancy, which in turn allows
for a smaller fleet size. Fault detection systems allow main-
tainers to correct issues before they become severe and can
even prevent injury by detecting the development of a catas-
trophic failure before it happens(Arena, Collotta, Luca, Rug-
gieri, & Termine, 2022). Such systems are usually only con-
cerned with detecting faults that are low-frequency and high
severity because high-frequency faults suggest that a funda-
mental design change is needed — or otherwise can be miti-
gated with regularly scheduled maintenance — and low-cost
events are generally not worth the expense of developing and
installing a detection system.
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Ground vehicles are complex machines with many interre-
lated systems, and these systems are expected to perform a
wide range of tasks in a variety of environments. This com-
plexity makes it challenging for human experts to establish
indicators that can be used to consistently determine a vehi-
cle’s condition. There are a large number of sensor signals to
take into account, each with varying relevance (Giordano et
al., 2022). Furthermore, faults often manifest in the relation-
ship between signals rather than in the values of an individual
signal, meaning that checking whether a signal has exceeded
its nominal range is insufficient. Instead, one can learn the
patterns of a fault automatically with a data-driven approach.
This involves collecting large amounts of healthy and faulty
operating data and creating a model that can distinguish the
two.

Unfortunately, it is rare to find data that is cleanly labeled
as ‘healthy’ or ‘faulty’ because collecting this data often
involves running a machine to failure, which can be pro-
hibitively expensive and time-consuming(Theissler, Pérez-
Velázquez, Kettelgerdes, & Elger, 2021). Such a procedure
also results in a highly skewed dataset since nearly all of the
data will be ‘healthy,’ and it is usually infeasible to account
for all possible failure modes. For these reasons, a supervised
data-driven classification approach is often untenable for fault
detection.

The lack of labeled data motivated us to frame the problem
as anomaly detection instead of classification. In anomaly
detection, sensor data that is known to be from a period of
normal operation is used to model the baseline behavior, then
deviation from the baseline behavior can be used as an in-
dicator of the vehicle’s condition. If the deviation increases
past some threshold, an anomaly is detected - possibly indi-
cating the development of a fault. Broadly speaking, prog-
nostic health management (PHM) capabilities are, in increas-
ing order: anomaly detection, diagnostics, and prognostics
(Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006; Goebel
et al., 2017). While at the lowest level of PHM capability,
anomaly detection is very important in its own right and can,
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over time, be used to attain higher levels of PHM capability
(Sikorska, Hodkiewicz, & Ma, 2011).
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Figure 1. Outline of our approach

The selected approach was based on autoencoders. Tradi-
tionally, autoencoders were used for dimensionality reduc-
tion and feature learning (Goodfellow, Bengio, & Courville,
2016). Early successful implementation and deployment of
autoencoders for anomaly detection predate the emergence
of deep learning (Japkowicz, Myers, & Gluck, 1995). More
recently, autoencoder-based anomaly detectors have been
shown to have considerable promise because, unlike classi-
cal classifiers that demand balanced datasets, their training
can be based on data associated with normal operation, which
comes in abundance, as opposed to data associated with fail-
ures, which is difficult to come by (Eklund, 2018; Yan & Yu,
2015).

Autoencoders encode their input data in a lower dimensional
space and then reconstruct the original input from the com-
pressed representation. This topology encourages the model
to learn the most important underlying features and ignore
some of the noise (Darban, Webb, Pan, Aggarwal, & Salehi,
2024). For anomaly detection, an autoencoder is trained on
healthy data so it is expected to accurately reconstruct other
healthy data and poorly reconstruct faulty data. Thus, data
samples with high reconstruction errors correspond to anoma-
lies (Giannoulidis, Gounaris, & Constantinou, 2024). How-
ever, it is important to note that the training data for an au-
toencoder must contain all relevant operating and environ-
mental conditions; otherwise, the data samples associated
with different operating conditions will also result in a large
autoencoder error. Operating and environmental conditions
affect measurements and features. Without intelligent fea-
ture extraction, the sensitivity to damage is directly propor-
tional to the sensitivity to changes in the operating conditions
(Worden, Farrar, Manson, & Park, 2007). Data-driven fea-
tures, e.g., encodings of autoencoders, require that the train-
ing and validation data include representative operating con-
ditions that the model will be exposed to in use. For example,
if an autoencoder model is trained using the data associated
with low-speed driving conditions only, high-speed driving
will likely induce a model anomaly.

This study adopted an iterative approach, which started
with setting up an end-to-end workflow consisting of pre-

processing, model development, and post-processing, de-
picted in Figure 1, and then continued with exploring the as-
sociated hyperparameter space.

The rest of the document is organized into nine sections. Sec-
tion 2: Dataset describes the format and content of the vehi-
cle operating data provided to us. Section 3: Signal Selection
provides the domain knowledge that motivated our choice
of signals to use in the model. Section 4: Pre-processing
explains our procedure for cleaning and structuring the raw
sensor data. Section 5: Model describes the autoencoder ar-
chitectures. Section 6: Post-processing describes how we
use the model outputs for anomaly detection and discusses
some of the key hyperparameters and variations that were
considered at each of these steps. Section 7: Experiments
explains our observations on how different hyperparameters
affected model performance, Section 8: Results presents met-
rics for the best configuration we tested, and Section 9: Dis-
cussion reviews our interpretation of these results. Finally,
Section 10: Conclusions recapitulates the key findings and
outlines potential future work.

2. DATASET

The original dataset contained operating data for 828 vehi-
cles. Signals from each vehicle’s engine control unit (ECU)
were collected during operation at a 1Hz sampling rate using
the controller area network (CAN) bus interface. These sig-
nals are defined by the society of automotive engineers (SAE)
J1939 standard, which defines the range, scaling, units, and
information included in each signal. The signals collected
were a mixture of measured sensor values and ECU calcu-
lated variables. Diagnostic trouble codes (DTCs) were also
logged and provided to us as a general message describing
the issue. Each DTC event logged was accompanied with a
timestamp of the event, the associated vehicle subsystem that
was the source of the message and the status of that fault, if it
was active or inactive. The signals, DTCs, and corresponding
timestamps were provided to us in a collection of computable
document format (CDF) files.

A log of maintenance events was also provided for each ve-
hicle. The maintenance logs included text descriptions of
the fault, corrective actions taken, dates associated with the
start and completion of the repair, as well as specific parts
and quantities required. All text descriptions were manually
written by the vehicle maintainers. We grouped the descrip-
tions by fault type for our own organization, using a com-
bination of manual labeling and clustering via the sentence-
transformers Python library. We operated on the assumption
that engine-related maintenance events corresponded to a real
engine-related fault, which might be detectable in the period
leading up to the maintenance event.

We selected eight vehicles with engine-related maintenance
events for our investigation. The pool of candidate vehicles
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Table 1. List of Vehicles

Vehicle ID Maintenance Event Fault Comment Context
preference

E01 Engine Overheating Replaced cooling system parts: thermostat, gasket, filler cap -
E02 Water Pump Inoperable Replaced inoperable water pump - unknown failure mode Idle
E03 Thermostat Failure Three work orders in short time frame; multiple parts replaced Idle
E04 Injector Assembly Four injectors replaced - unknown failure mode. Idle
E05 #4 Fuel Injector Failure One injector replaced - unknown failure mode. Idle
E06 Low Eng. Coolant Unknown amount of coolant added. Drive
E07 Low Eng. Oil & Coolant Unknown amounts of coolant and oil added. Drive
E08 Low Eng. Oil & Coolant Unknown amounts of coolant and oil added. Drive

consisted of those with both an engine-related fault and a cor-
rective action taken to repair the issue. From those candi-
dates, a domain expert prioritized faults that were thought to
have a higher probability of success in the fault detection pro-
cess. This assessment was based on the severity of the fault,
a lack of other confounding faults in the maintenance record,
available signals, and whether enough data was available for
both training and evaluation of the model. This meant that
there was sufficient data available such that the operating con-
ditions present in the evaluation period were also covered in
the period of healthy training data. The eight selected vehi-
cles and the fault information from the provided maintenance
record is listed in Table 1. The table also includes our own
comments about each fault and whether we believe the fault
is more likely to manifest in idle or driving mode.

A period of data preceding each vehicle’s maintenance event
was reserved for model evaluation. This evaluation period
was determined by an expert based on a safe estimate of how
much time and usage that type of fault typically takes to de-
velop. The usage history of vehicle E04 is shown in Figure 2.
It cannot be assumed that all of the data inside the evaluation
period is faulty, but we expected our models to detect the fault
somewhere within that period. We confirmed that there were
no relevant maintenance records before the evaluation period,
and we assumed that all data preceding the evaluation period
was healthy. This healthy baseline data was used for model
training or validation.

3. SIGNAL SELECTION

At their core, diesel engines generate a series of combustion
events using a mixture of compressed air and diesel fuel oil.
The energy from those events is converted to rotational force
and heat by the engine. In a healthy engine, for any given en-
gine speed, torque demand, coolant temperature, and intake
air mass flow, the ECU will command a given amount of fuel
to be injected. The combustion creates the intended amount
of torque output from the engine along with a given amount
of heat as a byproduct, which is transferred to the surrounding
environment via the engine’s radiator and exhaust gas. If the
engine is experiencing a fault of sufficient magnitude, those

levels of torque and heat generated would differ from the out-
put of a healthy engine, which would be detectable.

Figure 2. Usage history for vehicle E04

Figure 3. Block diagram of the engine and cooling system

Two engine fault scenarios we expected to be detectable are:

• If the fuel system experiences a fault, the quantity or tim-
ing of the fuel injected will change the amount of actual
torque and excess heat that the engine generates.

• If the cooling system experiences a fault, its ability to
transfer heat away from the engine will be affected, typ-
ically resulting in elevated coolant temperatures relative
to a healthy engine at the same engine speed and torque.

Signals for the models were selected based on our under-
standing of the physics governing the operation of the en-
gine, and what was available on the vehicle’s ECU. A block
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Table 2. List of input signals

Signal Symbol Signal Source Unit Min Max
Vehicle Speed vv ECU Measured mph 0 100
Engine Speed ωe ECU Measured rpm 0 3000
Engine Torque τe ECU Calculated % 0 100
Engine Coolant Temp. Tec ECU Measured °F -40 300
Engine Coolant Temp. Rate of Change Ṫec Model Calculated °F/s
Engine Fan Speed vef ECU Status % 0 100
Intake Manifold Temp. Tim ECU Measured °F -30 300
Intake Manifold Pressure pim ECU Measured psi 0 45
Engine Oil Pressure peo ECU Measured psi 0 140

diagram of the engines cooling system is shown in Figure 3,
showing the overall flow of engine coolant and heat through
the components of the cooling system. For the engine ther-
mal model there were three core pieces of information we
had to understand: the quantity of heat generated, the system
temperatures, and the capacity of the cooling sub-system. To
monitor the heat generated, the model required engine speed
and engine torque, as well as intake manifold temperature
and pressure. Engine torque is available in several forms on
the ECU. Of those available, Actual Engine Percent Torque
is the signal used here. This represents the total percentage
of torque that the engine is producing in relation to its de-
fined reference torque, including all torque requests from the
driver, as well as other vehicle and engine requests. System
temperatures are represented by the engine coolant tempera-
ture and the calculated rate of change of engine coolant tem-
perature. Finally, vehicle speed and engine fan speed were
used as proxies for mass airflow over the engine’s radiator
(the primary source of heat rejection for the engine). Access
to ambient temperature would have been a welcomed addition
to the set of signals, but was not available to us.

We collected 30 or 60 second windows of data from each
signal as input to the model. The lengths of the observation
windows were chosen to accommodate an inherent delay in
the thermal response to changes in engine speed and torque
due to the thermal mass of the engine and its cooling system.
In a steady operating condition, it can take minutes to reach
thermal equilibrium, but in normal operation, the engine’s
speed and torque behave much more dynamically (even the
provided data rate of 1 Hz removes some of the dynamic na-
ture of the engine behavior). The length of the observation
window needed to be long enough to capture some portion
of the thermal response. However, longer windows require
larger models, and cause more data to be dropped during pre-
processing. We chose the observation window length to bal-
ance these considerations.

4. PRE-PROCESSING

Before training models, it was necessary to clean the data and
package it in a more accessible way. This routine is outlined

at a high level in Algorithm 1. First, a plausible range of val-
ues for each signal was determined, as shown in Table 2. Sig-
nal values outside the range were treated as sensor glitches
and deleted. We deleted any data associated with duplicate
timestamps, except for cases in which a duplicate timestamp
was immediately followed by a gap of matching size. In such
cases, the repeated timestamp was adjusted to obtain a con-
tinuous sequence. Individual missing values in a signal were
imputed by linear interpolation, and gaps of size 2 were im-
puted by copying the values from either side. Files containing
a decreasing time step were considered corrupt and discarded
entirely. Cumulative metrics were calculated for each times-
tamp, such as total distance driven, total engine-on time, and
total driven time. These metrics were each centered such that
the maintenance event fell at zero.

The engine coolant temperature rate of change was not part of
the original dataset so it had to be estimated. The J1939 spec-
ification defined the resolution of the engine coolant temper-
ature to be 1 degree Celsius. The resulting rate of change was
a flat line of zero degrees/second with sporadic spikes to 1
degree/second at the data points where the temperature steps
were present. We applied a Gaussian filter to smooth the sig-
nal before calculating the rate of change, resulting in a more
realistic representation that showed the constant fluctuation
of the coolant temperature.

To construct a set of data samples for model development, we
split all continuous stretches of signal data into windows with
lengths equal to our observation window (30 or 60 seconds).
Either a sliding window or consecutive window approach was
used, depending on the experiment. Since the ECU data was
recorded at 1Hz, a 30-second window would capture 30 con-
secutive values from each signal; then, if five signals were
chosen for the model, for example, one data sample would
contain 150 floating point values total. Each resulting sample
was added as a row in a Pandas dataframe (McKinney, 2022)
alongside its starting timestamp and cumulative metrics.

We further divided the data from each vehicle into idle and
driving modes in order to model each mode separately. We
defined the ‘idle’ mode as having vehicle speed of 0 mph and
engine speed between 400 and 900 rpm. We considered the
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Algorithm 1 Pre-Processing Routine

Require: Multivariate time-series data D, window length
M , operating condition OC

Ensure: M -Windows of cleaned data satisfying OC
1: Remove data with invalid timestamps
2: Repair repeated timestamps
3: Impute missing signal values
4: Impute short runs of signal outliers
5: Remove long runs of signal outliers
6: Divide remaining chunks of time-consecutive data into

M -second (possibly sliding) windows
7: for each window do
8: Compute and insert virtual signals
9: Accept windows satisfying OC

10: Adjust rejected window bounds to borrow samples
from neighbors

11: Accept adjusted windows satisfying OC
12: end for
13: return Accepted windows

vehicle to be ‘driving’ if the vehicle speed was at least 2 mph
and the engine speed was at least 400 rpm. When construct-
ing a set of samples for one of these operating modes, we
checked that these conditions were met at all timestamps in
a sample, and the whole sample was discarded if the check
failed. If too many samples were discarded this way, we
performed an additional step; for each discarded sample, we
checked whether the window bounds could be shifted left or
right to overlap an adjacent window and construct a new sam-
ple that met the idle or driving conditions.

We could not always split the healthy period into a contigu-
ous training set followed by a contiguous validation set be-
cause the resulting distributions of operating data of the two
sets were too different. On the other hand, randomly select-
ing samples for training and validation opens the potential
for data leaks because adjacent data samples are similar. To
mitigate data leaks and ensure that the full range of operat-
ing conditions are represented in both training and validation
sets, we first split the data into consecutive chunks of samples
and then randomly assigned each chunk to either the training
or validation set.

It was important to verify that our training set covered the
range of operating and environmental conditions seen in the
evaluation period. This was because the autoencoder would
flag novel operating and environmental conditions as anoma-
lies. Figure 4 shows how we plotted histograms of each signal
to verify that the full range of values was represented.

We scaled each signal separately before model training, either
by normalization or standardization. Normalization involved
subtracting the minimum value of the signal in the training set
and dividing by the range (i.e. the maximum minus the min-
imum). Standardization involved subtracting the mean value
of the signal in the training set and dividing by the standard

Figure 4. Distribution of signal values for vehicle E07

deviation. The choice of scaling procedure was treated as a
hyperparameter.

5. MODEL

For each vehicle we trained a neural network autoencoder
on data from healthy operating periods so that the autoen-
coder could be expected to produce low reconstruction error
on data from other presumably similar healthy periods and
high error on faulty periods. The autoencoder was trained
to minimize the mean squared error (MSE) between the in-
put and output. Five main autoencoder architectures were
investigated; fully-connected autoencoders (FCAE), convo-
lutional autoencoders (CNNAE), temporal convolutional net-
work autoencoders (TCNAE), and two types of transformer-
based autoencoders (TFAE-asym, TFAE-sym). We also tried
implementing the popular TranAD architecture (Tuli, Casale,
& Jennings, 2022), but had difficulty adapting it to our par-
ticular dataset.

The fully-connected model maps the input vector x to the
output vector of the same dimensions y via n − 1 hidden
layers (Figure 5)

x 7→ h1 7→ h2 7→ . . . 7→ hn−1 7→ y ≡ x̂ (1)

The model parameters were organized in a set of n weights
and biases {(W k, bk)}nk=1 for fully connected layers. Acti-
vation functions σ() associated with the hidden layers were
ReLU(),

ReLU(z) = max(z, 0) (2)

and the output layer was linear. The output of a fully-
connected model was
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Figure 5. Conceptual diagram of an autoencoder with fully-
connected layers (FCAE)

y = W n−1hn−1 + bn (3)

where hn−1 was the last hidden layer. The hidden layers were

h1 = ReLU (W ox+ bo)

...
hn−1 = ReLU (W n−2hn−2 + bn−1)

(4)

The additional topology-related hyperparameters that re-
quired specification were the lengths of hidden layers

Nk = dim (hk) k ∈ {1, 2, . . . , n− 1} (5)

and dropout regularization parameters for each of the hidden
layers. Dropout and batch normalization were applied after
every layer except for the final output layer, before the acti-
vation function.

The convolutional neural network autoencoder (CNNAE) ar-
chitecture (Figure 6) began with some number of convolu-
tional blocks, ended with an equal number of deconvolutional
blocks, and had a fully-connected model in between (as de-
fined earlier). A convolutional block consisted of a depth-
wise convolution layer that applied filters to each signal sep-
arately to increase the number of channels, followed by max
pooling. A deconvolutional block performed nearest neigh-
bor upsampling, followed by a depth-wise convolution layer
that decreased the number of channels. All blocks except
the final (output) deconvolutional block performed dropout,
batch normalization and ReLU. The motivation for this ar-
chitecture was to learn features from each signal waveform
separately via the convolutional layers and then learn rela-
tionships among the signals via the fully-connected layers.

Another convolutional architecture was explored, called a
Temporal Convolutional Network Autoencoder (TCNAE).
The dilated convolutions employed by this architecture aim
to model long temporal patterns more naturally than tradi-
tional convolutions (Darban et al., 2024). We followed the
design offered by (Thill, Konen, Wang, & Bäck, 2021), using
the python library pytorch-tcn (Krug, 2023) to implement the
dilated convolutional layers.

Motivated by the success of transformers in modeling se-
quential data (Vaswani, Shazeer, Parmar, Uszkoreit, & Jones,
2017), two transformer-based autoencoder architectures were
explored. The first architecture, which we refer to as
TFAE-asym, followed the implementation in (Liang, Knut-
sen, Vanem, Æsøy, & Zhang, 2023) in which the output
from a series of transformer encoder blocks was flattened
and passed through a series of fully-connected layers. Be-
cause this architecture has residual connections that could al-
low the model to learn the identity function, we chose one of
the fully-connected layers to act as a bottleneck by setting its
size to be smaller than the size of the input data.

The second transformer architecture (TFAE-sym, Figure 7)
similarly begins with a series of transformer encoder blocks,
but instead of fully-connected layers, a series of transformer
decoder blocks were introduced to reconstruct the data. We
again addressed the problem of the residual connections by
introducing a fully-connected bottleneck. Following the pat-
tern of the other fully-connected layers in the transformer
model, which are applied positionwise instead of flattening
the data, so too are these bottleneck layers applied to each
timestep separately.

All models were implemented in pytorch (Paszke et al.,
2019). Final hyperparameters are listed in Table 7 in the ap-
pendix.

6. POST-PROCESSING

From a trained autoencoder, we compute the reconstruction
error and compute a Condition Indicator (CI) over that er-
ror sequence. In this paper, the CI is the rolling average of
the mean absolute error (MAE) of each model input sample.
MSE was also considered but showed no improvement, and
MAE is more interpretable. The threshold for anomaly de-
tection is the maximum of this CI over the baseline samples
(training and validation) plus some percent margin to prevent
false positives (Figure 9). An anomaly is detected when the
CI crosses the threshold.

We compared the distributions of MAE values between
training, validation, and evaluation periods, using Kullback-
Leibler (KL) divergence DKL (Bishop, 2006). For example,
the KL divergence between the estimated training error distri-
bution p̂t(MAE) and validation error distribution p̂v(MAE)
is given by

DKL = −
∫

p̂t(MAE) ln

(
p̂v(MAE)

p̂t(MAE)

)
d(MAE) (6)

The estimated error distributions are shown in the middle sub-
plot of Figure 8. They were using estimated using kernel
density estimation (KDE) where the distribution p̂(MAE) is
a scaled sum of kernels g(.), centered at individual N data
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Figure 6. A block diagram of a convolutional autoencoder (CNNAE)
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Figure 7. A block diagram of a symmetric transformer autoencoder (TFAE-sym)
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p̂(MAE) =
1
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g

(
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)
.

(7)

We used scipy’s (Virtanen et al., 2020) Gaussian KDE from
scipy’s stats module, with default parameters.

The divergence between training and validation MAE distri-
butions DKL(t, v) should be low, indicating that the model
generalizes well, and the divergence between validation and
evaluation MAE distributions DKL(v, e) should be high, in-
dicating the development of a fault. Since it was also infor-
mative to note the mean shift between the validation and eval-
uation MAE distributions, we measured the discriminability
(Duda, Hart, & Stork, 2001) between them as:

d(e, v) =
|µe − µv|√
σ2
e + σ2

v

(8)

Figure 8 illustrates a sample model evaluation of a single-
vehicle model. The leftmost subplot shows the evolution of

the autoencoder error leading up to a maintenance event. Zero
hours (t=0) corresponds to the maintenance event. The dots
denote individual samples with blue, orange, and red cor-
respond to training, validation, and evaluation respectively.
The solid line is the filtered error, using a rolling average
⟨MAE⟩N=20. The maximum of the baseline ⟨MAE⟩ is
shown for reference, and in this example a 100% margin is
added to determine the detection threshold. The middle sub-
plot shows the error distributions, and the rightmost subplot
shows the corresponding mean plus and minus one standard
deviation width (µ ± σ). The KL divergence between train-
ing and validation error distributions DKL(t, v) = 0.01 was
much smaller than the KL divergence between evaluation and
validation error distributions DKL(v, e) = 0.21, as expected
for successful detection.

7. EXPERIMENTS

Exploration of the hyperparameter space spanned across all
stages of the work flow: pre-processing, model, and post-
processing. Each stage had its own set of parameters, and
heuristic optimization of this set of parameters was an iter-
ative and time-consuming process. To simplify this process
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Figure 8. Example model evaluation (vehicle E04, idle data, TFAE-sym)
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Figure 9. Post-Processing Block Diagram

we devised experiments where different combinations of pa-
rameters were used to train the models. In each experiment,
we trained a variety of models for each vehicle and compared
the performance against previous experiments; we looked for
detection on new vehicles and for improved performance on
vehicles that showed good detection previously. Based on the
results of these experiments, a final set of hyperparameters
was selected. The results from this experiment are discussed
in the next section.

The key hyperparameters in the pre-processing stage were op-
erating mode, choice of input signals, and observation win-
dow length. Models trained on the entire dataset (idle and
driving data together) resulted in bimodal error distributions,
which indicated the idle and driving modes. Hence, we split
the data into idle and driving subsets, and subsequent experi-
ments were carried out on each mode separately.

We saw significant improvements in model performance by
separating idle and driving data. The data collected during
the idle operation condition benefited from the fact that it is
a singular fixed operating point with a set engine speed and
a relatively fixed load that has a dependency on the engine
operating temperature. This stability is beneficial for model
performance as this state is both highly repeatable and fre-
quently seen. Data collected when the vehicle is actively be-

ing driven has to cover a wide range of engine speeds and
torque loads. The advantage of the driving mode is that the
differences between the healthy state and a faulted state for
a number of failure modes are increased or only occur as a
result of the additional load of driving.

The choice of signals also had a strong effect on model per-
formance. Nine signals were initially identified as relevant to
the thermal system of these vehicles, and we investigated sev-
eral subsets. Some signals were judged to be too sparse, such
as Engine Fan Speed, which was zero at the large majority
of points. That signal also contained frequent sensor glitches
across vehicles, so leaving it out resulted in more usable data
— this alone improved some models. Some signals were re-
garded as fundamental and so were included in all models,
such as the Engine Coolant Temperature, its rate of change,
Engine Speed, and Engine Torque.

Initial experiments used a 30-second observation window, but
we also experimented with a longer 60-second window. The
motivation for expanding the observation window was to po-
tentially capture more of the dynamics in the slow-moving
temperature signal. No significant improvement was ob-
served, and some models suffered because dividing our data
into longer windows resulted in more data discarded during
pre-processing and fewer total training samples. To bolster
the number of samples for training we switched from the
consecutive-window approach to a sliding-window when us-
ing the 60-second observation window. None of these vari-
ations showed improvement over the initial consecutive 30-
second approach.

Hyperparameters for model development included the scal-
ing method, model architecture, regularization, number and
width of layers, learning rate, and batch size. No difference
in performance was observed between the normalization and
standardization scaling methods. The choice of model archi-
tecture was only somewhat impactful; the highest threshold
margins were achieved by the TFAE-sym architecture, but in
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general, models for a particular vehicle tended to perform ei-
ther strongly or poorly regardless of the architecture.

Models tended to overfit if their number of parameters was
large, especially for vehicles with less training data. Our
strategies for mitigating overfitting included dropout, adding
Gaussian noise, reducing model size, and early stopping. A
high dropout ratio caused models to converge at a higher val-
idation error, so it was limited to 10% if used at all. Adding a
small amount of Gaussian noise to the input data also helped
prevent overfitting but otherwise we observed no improve-
ment in either validation error or anomaly detection. It was
also effective to simply stop model training when the vali-
dation loss began to trend upwards. The number of layers,
layer widths, learning rate, and batch size were adjusted as
necessary per model, but none showed a consistent overall
relationship to model detection.

Post-processing hyperparameters defined the procedure for
converting raw model errors into condition indicators for
anomaly detection. They included considerations such as
MAE vs MSE and the number of filter taps. The choice of
using MAE or MSE did not show any overall difference in
performance, so MAE was chosen for ease of interpretability.
We generally used 20 taps for the running mean to smooth
out short-term spikes in MAE, but this number could be ad-
justed freely as needed. Greatly increasing the number of taps
does become a practical issue for deployed models running in
real-time because it adds an initial delay to the prediction and
assumes continuity that may not be present.

8. RESULTS

Here we report results for two pre-processing configurations
that we found to have the best-performing models overall, one
for idle mode and one for driving mode. The idle model used
five signals: Engine Speed, Torque, Engine Coolant Tempera-
ture, Engine Coolant Temperature Rate of Change, and Intake
Manifold Temperature. The driving model used the same five
signals plus Vehicle Speed (six total). Both used consecutive
30-second observation windows, a symmetric transformer ar-
chitecture, and 20 taps for MAE smoothing.

Table 3. TFAE-sym detection per vehicle in idle mode

ID Horiz. Margin DKL(v, e) d(e, v) Verdict
E01 33.6 h 24% 0.32 0.33 yes
E02 - 0% 0.04 0.08 no
E03 30.2 h 53% 0.05 0.04 yes
E04 21.0 h 225% 0.21 0.22 yes
E05 - 0% 1.61 0.09 no
E06 213.5 h 82% 0.04 0.15 yes
E07 - 0% 0.34 0.07 no
E08 - 0% 0.06 0.07 no

Table 3 and Table 4 show performance metrics for the TFAE-

Table 4. TFAE-sym detection per vehicle in driving mode

ID Horiz. Margin DKL(v, e) d(e, v) Verdict
E01 - 0% 0.44 0.20 no
E02 177.5 h 3% 0.04 0.09 no
E03 41.9 h 120% 0.19 0.38 yes
E04 31.9 h 39% 0.08 0.26 yes
E05 - 0% 0.29 0.29 no
E06 159.7 h 170% 0.06 0.24 yes
E07 - 0% 0.07 0.00 no
E08 13.9 h 22% 0.40 0.47 yes

Table 5. Detection per architecture on E04 in idle mode

Mod Horiz. Margin DKL(v, e) d(e, v)

FCAE 21.0 h 146% 0.19 0.26
CNNAE 21.0 h 59% 0.06 0.19
TCNAE 21.0 h 143% 0.14 0.25
TFAE-asym 21.0 h 120% 0.13 0.24
TFAE-sym 21.0 h 225% 0.21 0.22

sym architecture on each vehicle. The recorded metrics are
the detection horizon in hours of engine-on time, the maxi-
mum possible margin that allows detection at that detection
horizon, the KL divergence between validation and evalu-
ation MAE distributions, and the discriminability between
those distributions. The verdict column shows our interpreta-
tion of whether we are confident that the model successfully
detected the fault (yes), or if we believe there is an alternate
explanation for the detected anomaly (no).

Table 5 compares the performances of different autoencoder
architectures on specifically vehicle E04 in idle mode. All
models were able to detect this fault at the same detection
horizon, but the TFAE-sym architecture had the highest max-
imum possible margin. This trend held for the other vehicles
as well, with TFAE-sym achieving higher margins than other
architectures.

In an ideal case, we would expect the ⟨MAE⟩ to increase
monotonically leading up to the fault. There would then be
a trade-off between the detection horizon and margin where
decreasing the margin would result in an earlier detection and
vice versa. Our models generally did not align with this
archetype, instead showing distinct spikes of ⟨MAE⟩ that
cross the detection threshold briefly. The timing of the major
spikes was often consistent across model runs, so measuring
the maximum margin at the earliest major spike was useful to
us as an indicator of model quality. For example, the evalua-
tion plot in Figure 8 shows a threshold with a margin of 100%,
but that margin could be increased as far as 225% with only
slightly shorter detection horizon.
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9. DISCUSSION

An anomaly detected by an autoencoder requires further in-
terpretation because an anomaly could either be an indica-
tion of a fault or simply an unrecognized operating condition.
This was particularly likely to occur in our dataset because
the vehicles were operated infrequently. Notably, several
of the vehicles suffered from a lack of data across seasons,
which caused our models to flag unseen seasonal temperature
changes as anomalies, thereby obscuring any true detection of
faults. For vehicles where the baseline period did not span all
seasons, we shrank the evaluation period until the full range
of temperature values was represented in the training set. If
this was not possible we discarded the vehicle since we could
not be confident that its detected anomalies were truly indica-
tive of a fault.

For example, initial models for vehicle E07 appeared to be
a resounding success according to the metrics; the model
flagged an anomaly early, with high margin, and the MAE
distribution in the evaluation period was markedly different
from the baseline. However, closer inspection revealed that
seasonal temperature changes were the source of the anomaly.
The baseline period spanned from April to November and the
evaluation period spanned from November to July, meaning
that the model had been trained without any data from the
colder winter months. We observed that the evaluation pe-
riod contained low values of intake manifold temperature that
were not represented in the training set, which corresponded
exactly with the major MAE spikes. Thus, we shifted the end
of the baseline period forward into March, verified that the
range of signal values was represented in the training data,
and trained models again. The new idle and driving models
for vehicle E07, as seen in Table 3 and Table 4, did not detect
at all.

We sometimes also passed a negative verdict if we judged
that a model detected too early and too briefly, in a way that
was not consistent with the expected behavior of the fault. As
human observers we were skeptical when we saw a model’s
⟨MAE⟩ cross the detection threshold only once, briefly, and
then return to normal levels. This was the case with models
for vehicle E02, which briefly crossed the detection thresh-
old long before the fault and soon returned to baseline levels.
In general, multiple brief detections in succession were more
convincing, as were long periods spent above the threshold
(or even a long period at elevated MAE levels), especially
if this behavior occurred leading up to the fault time. Con-
fidence of a true fault detection was further increased if that
vehicle showed detection on both the idle and driving models.
Our process required a human in the loop for interpretation,
making detection verdicts somewhat subjective.

This analysis is complicated by the fact that some faults only
manifest under certain operating conditions; for example, a
thermostat failure would likely only reveal itself after the ve-

hicle reaches the temperature at which the thermostat is meant
to open. Such under-representation of operating conditions is
one possible explanation for why the model MAE might re-
turn to normal levels after crossing the threshold.

A single metric proved to be insufficient to serve as an ob-
jective measure of model quality. As our primary condition
indicator, ⟨MAE⟩ crossing a threshold with a high margin
was promising, but it was also important that KL(v, e) and
d(e, v) were high. Even if ⟨MAE⟩ never exceeded the vali-
dation threshold, markedly different validation and evaluation
distributions would indicate a lasting change, possibly rep-
resenting a developing fault. Conversely, ⟨MAE⟩ crossing
the threshold while the distributions remain similar could be
cause for suspicion. Early detections were generally better,
but if the model did not also detect close to the fault time then
it was less convincing. It was not clear how to combine these
considerations into a single representative score, so models
were always subject to human inspection and interpretation.

A limitation in working with this dataset was the lack of crisp
ground-truth labels. We relied on the maintenance logs for
some amount of ground truth, i.e. whether and when an en-
gine fault occurred, but previous work on this dataset identi-
fied some flaws with this approach (Bond et al., 2020). For
example, maintenance may have been conducted when there
was no fault, the maintainer may have incorrectly diagnosed
the fault, the corrective action may have failed to repair the
underlying fault, or a fault may have occurred for which no
maintenance was performed.

Our work encountered some further limitations with this
dataset. We observed that maintenance logs for some vehicles
were likely to be incomplete, as evidenced by gaps as long as
2 years. The fault descriptions and corrective narratives were
often short and vague, so it was difficult to determine exactly
what happened or how severe was the fault. The 1Hz sam-
ple rate meant that the more dynamic signals lost resolution,
which motivated our decision to investigate thermal-related
faults because temperature changes occur over a longer time
scale. Some variables like ambient temperature were miss-
ing from the dataset, which is a significant gap in any model
of a vehicle’s thermal system. And some vehicles had less
than one calendar year of data before the evaluation period,
which introduced the possibility of flagging seasonal temper-
ature changes as an anomaly.

Table 6 shows the number of days and operating hours lead-
ing up to the maintenance event for each vehicle. Many vehi-
cles have data recorded across several years, but only a frac-
tion of those days show the vehicle in operation (‘Active’).
For some vehicles there are spans of months or years where
there is no recorded operating data at all. Table 6 also shows
that these vehicles spend a large portion of their operating
time in idle mode. The limited or deficient coverage of all
possible operating and environmental conditions is only fur-
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Table 6. Pre-fault usage statistics

Vehicle Calendar Days Active Hours Miles
Elapsed Active Idle Driving

E01 1,405 200 223 100 2,043
E02 505 211 538 61 817
E03 265 118 82 63 1,078
E04 981 322 207 158 3,080
E05 415 116 326 210 6,179
E06 854 253 238 142 2,770
E07 455 126 74 46 1,165
E08 382 103 54 55 1,699

ther exacerbated when the data is split into training, valida-
tion, and evaluation sets.

10. CONCLUSION

This work investigated detection of high-severity and low-
frequency engine faults in ground vehicles. Scarcity of data
associated with such faults along with sporadic usage of these
vehicles were the biggest challenges. To overcome these
challenges a multi-step approach was proposed. First, a study
of the system is carried out to identify most relevant input sig-
nals. Second, an autoencoder-based anomaly detection was
used to isolate the anomalous data. Finally, the anomalous
data was evaluated based on multiple metrics.

We found that pre-processing considerations affected model
performance more than the autoencoder architecture and the
model hyperparameters. Namely, the decision to model the
idle and driving modes separately had a strong impact, as did
the choice of signals to use in the model. Though we were
conscious of the necessity for widely covered operating and
environmental conditions, we could not always anticipate the
nature of these conditions. As we explored different data fil-
ters and signal sets, previously unknown data limitations were
an early pitfall that caused models to flag novel operations
conditions as anomalies. A manual review of these detec-
tions led us to dismiss some anomalies and gain confidence
about others.

Future work will extend the findings along three main paths:
investigating fleet models, improving post-processing, and
developing elements of diagnostics. For example, the fleet
models may be trained and validated using healthy data seg-
ments from eight to twelve vehicles, where a subset of ran-
domly selected vehicles will provide the training data, and the
remaining vehicles will provide the validation data. The mod-
els will then be evaluated on vehicles with faults, and their
performances will be compared to those of single-vehicle
models. The post-processing can potentially improve upon
using a moving average and a threshold by exploring more
advanced statistical methods, such as those based on likeli-
hood ratios or Bayesian reasoning. In addition, there is an op-
portunity to add objectivity to fault interpretation to facilitate

decision support. Decomposition and subsequent analyses of
MAE by signals may provide insights into the anomaly. In
addition, as stated above, autoencoders are traditionally used
for feature learning. The innermost layer – the encoding or
bottleneck – presumably has the most compact representa-
tion of the data and can be used as an input for diagnostics
development.
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NOMENCLATURE

AE autoencoder
CAN controller area network
CDF computable document format
CI condition indicator
CNNAE convolutional autoencoder
DTC diagnostic trouble codes
d discriminability
DKL Kullback-Leibler divergence operator
e data samples associated with evaluation
E## Engine-faulted vehicle ID
ECU engine controller unit
FCAE fully-connected autoencoder
KL Kullback-Leibler (divergence)
MAE mean absolute error
MSE mean square error
µ mean
peo engine oil pressure signal
pim intake manifold pressure signal
p̂() estimated probability density function
ReLU rectifier linear unit (activation function)
σ standard deviation
t data samples associated with training
Tec engine coolant temperature signal
Tim intake manifold temperature signal
Ṫec engine coolant rate of change signal
TCNAE temporal convolutional autoencoders
TFAE transformer-based autoencoders
tvd total variation distance
τe engine torque signal
v data samples associated with validation
vv vehicle speed signal
vef engine fan speed signal
ωe engine speed signal
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APPENDIX

The appendix contains information on hyperparameters. Ta-
ble 7 summarizes the hyperparameters associated with the
best-performing models shown in Table 5 and organizes
them into three groups: preprocessing, modeling, and post-
processing.

The appendix also contains evaluation plots (Figure 10) for
each vehicle’s idle data using the TFAE-sym architecture.
These plots show ⟨MAE⟩20 as the CI, and show the base-
line threshold in grey. The red vertical line represents the
beginning of the fault window.
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Table 7. Hyperparameters

Hyperparameter Value
Pre-processing
Max signal outlier run 2
Window size 30
Window slide 30 (no overlap)
Operating condition idle/driving
Modeling: FCAE
learning rate 5e-4
batch size 32
p dropout 0.05
noise scale 0.1
fully-connected layers [150, 128, 96, 80, 64, 48,

32,
48, 64, 80, 96, 128, 150]

Modeling: CNNAE
learning rate 1e-4
batch size 32
p dropout 0.0
noise scale 0.1
kernel size 3
channels [5, 25, 125]
fully-connected layers [875, 128, 96, 128, 875]
Modeling: TCNAE
learning rate 1e-3
batch size 32
p dropout 0.0
noise scale 0.0
blocks 3
k size 3
latent size 150
use skip connections True
Modeling: TFAE-asym
learning rate 1e-4
batch size 32
p dropout 0.0
noise scale 0.1
num layers 2
nhead 1
model dim 8
feedforward dim 64
fully-connected layers [240, 128, 64, 128, 150]
Modeling: TFAE-sym
learning rate 5e-4
batch size 32
p dropout 0.0
noise scale 0.1
num layers 2
nhead 1
feedforward dim 16
model dim 16
bottleneck dim 4
Post-processing
CI smoothed MAE
# smoothing taps 20

Figure 10. TFAE-sym evaluations on each vehicle’s idle data
with 0% margin thresholds dotted in grey.
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