Remaining Useful Life Estimation using Event Data
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Prognostics aims to predict the degradation of equipment by estimating their remaining useful life (RUL) and/or the failure probability within a specific time horizon. The high demand of equipment prognostics in the industry have propelled researchers to develop robust and efficient prognostics techniques. Among data driven techniques for prognostics, machine learning and deep learning (DL) based techniques, particularly Recurrent Neural Networks (RNNs) have gained significant attention due to their ability of effectively representing the degradation progress by employing dynamic temporal behaviors. RNNs are well known for handling sequential data, especially continuous time series sequential data where the data follows certain pattern. Such data is usually obtained from sensors attached to the equipment. However, in many scenarios, sensor data is not readily available and often very tedious to acquire. Conversely, event data is more common and can easily be obtained from the error logs saved by the equipment and transmitted to a backend for further processing. Nevertheless, performing prognostics using event data is substantially more difficult than that of the sensor data due to the unique nature of event data. Though event data is sequential, it differs from other seminal sequential data such as time series and natural language in the following manner, i) unlike time series, events are aperiodic and scarce, i.e., the appearance of events lacks periodicity; ii) unlike natural languages, event data do not follow any specific linguistic rule. Additionally, there may be a significant variability in the event types appearing within the same sequence. Therefore, this paper proposes an RUL estimation framework to effectively handle the intricate and novel event data. The proposed framework takes discrete events generated by an equipment (e.g., type, time, etc.) as input, and generates for each new event an estimate of the remaining operating cycles in the life of a given component. To evaluate the efficacy of our proposed method, we conduct extensive experiments using benchmark datasets such as the C-MAPSS data after converting the time-series data in these datasets to sequential event data. Furthermore, we propose several deep learning and machine learning based solution for the event-based RUL estimation problem. Our results suggest that the deep learning models, 1D-CNN, LSTM, and multihead attention show similar RMSE, MAE and Score performance. Foreseeably, the XGBoost model achieve lower performance compared to the deep learning models since the XGBoost model fails to capture ordering information from the sequence of events.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics, Event data, Deep learning, Remaining Useful Life (RUL), Regression
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.