
Remaining Useful Life Estimation using Event Data

Mahbubul Alam1, Laleh Jalali2, Dipanjan Ghosh3, Ahmed Farahat4 and Chetan Gupta5

1,2,3,4,5Industrial AI Lab, Hitachi America Ltd. R&D, Santa Clara, CA, 95054, USA
mahbubul.alam@hal.hitachi.com

laleh.jalali@hal.hitachi.com
dipanjan.ghosh@hal.hitachi.com
ahmed.farahat@hal.hitachi.com
chetan.gupta@hal.hitachi.com

ABSTRACT
Prognostics aims to predict the degradation of equipment by
estimating their remaining useful life (RUL) and/or the failure
probability within a specific time horizon. The high demand
of equipment prognostics in the industry have propelled
researchers to develop robust and efficient prognostics
techniques. Among data driven techniques for prognostics,
machine learning and deep learning (DL) based techniques,
particularly Recurrent Neural Networks (RNNs) have gained
significant attention due to their ability of effectively
representing the degradation progress by employing dynamic
temporal behaviors. RNNs are well known for handling
sequential data, especially continuous time series sequential
data where the data follows certain pattern. Such data is
usually obtained from sensors attached to the equipment.
However, in many scenarios, sensor data is not readily
available and often very tedious to acquire. Conversely, event
data is more common and can easily be obtained from the
error logs saved by the equipment and transmitted to a
backend for further processing. Nevertheless, performing
prognostics using event data is substantially more difficult
than that of the sensor data due to the unique nature of event
data. Though event data is sequential, it differs from other
seminal sequential data such as time series and natural
language in the following manner, i) unlike time series, events
are aperiodic and scarce, i.e., the appearance of events lacks
periodicity; ii) unlike natural languages, event data do not
follow any specific linguistic rule. Additionally, there may be
a significant variability in the event types appearing within the
same sequence. Therefore, this paper proposes an RUL
estimation framework to effectively handle the intricate and
novel event data. The proposed framework takes discrete
events generated by an equipment (e.g., type, time, etc.) as
input, and generates for each new event an estimate of the
remaining operating cycles in the life of a given component.
To evaluate the efficacy of our proposed method, we conduct
extensive experiments using benchmark datasets such as the
C-MAPSS data after converting the time-series data in these
datasets to sequential event data. Furthermore, we propose

several deep learning and machine learning based solution for
the event-based RUL estimation problem. Our results suggest
that the deep learning models, 1D-CNN, LSTM, and multi-
head attention show similar RMSE, MAE and Score
performance. Foreseeably, the XGBoost model achieve lower
performance compared to the deep learning models since the
XGBoost model fails to capture ordering information from the
sequence of events.

1. INTRODUCTION
Prognostics is concerned with the prediction of future health
and performance and any potential failure. Prognostics
techniques are typically applied when a fault or degradation is
detected in the unit to predict when a failure or severe
degradation will happen. The problem of predicting a failure
or estimating the remaining useful life of an equipment has
been extensively studied in the Prognostics and Health
Management (PHM) research community (Goebel et al.,
2017).

Failure Prediction (FP) can be defined as predicting whether a
monitored unit will fail within a given time horizon. The
prediction methods receive as input the raw measurements
from the unit and produce as output the probability of a certain
failure type. For different failure types, multiple models can
be constructed. If there are many failure examples,
classification models can be learned from the data to
distinguish between failure and non-failure cases.

On the other hand, Remaining Useful Life (RUL) estimation
is concerned with estimating how much time or how many
operating cycles are left in the life of the unit till a failure event
of a given type happens. The prediction methods receive as
input the raw measurements from the unit and produce as
output a continuous output that reflect the remaining useful
life (in time or operating cycles units). RUL estimation is the
most-studied problem in the PHM literature and one of the few
problems in which there are benchmark datasets such as the
C-MAPSS dataset from NASA (Saxena et al., 2008) and other
datasets with fewer number of run-to-failure examples (Gao
et al., 2015). If there are many run-to-failure examples, the
RUL problem can be formulated as a regression problem.
Traditionally several regression-based approaches have been
used to solve the RUL problem such as neural networks (Peel,
2008)(Lim et al., 2014), Hidden Markov Models (Ghasemi et
al., 2010), and similarity-based methods. (T. Wang et al.,

Alam et al. This is an open-access article distributed under the terms of the
Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Annual Conference of the Prognostics and Health Management Society 2021

 2

2008). Recently, many deep learning models have been
applied to the RUL problem. For instance, Deep
Convolutional Neural Network (CNN) (Babu et al., 2016)
applies the convolution and pooling filters along the temporal
dimension over the multi-channel sensor data. Long Short-
Term Memory (LSTM) (Zheng et al., 2017) uses multiple
layers of LSTM cells in combination with standard feed
forward layers to discover hidden patterns from sensor and
operational data.

However, most of the existing techniques for RUL are
designed to work on cases where the available data are
multivariate time-series of sensor measurements that were
recorded before failures. For most of the equipment, such
sensor measurements are not available. Instead, most of
equipment control units record and communicate events that
reflect important changes in the underlying sensors (e.g., an
event to reflect high pressure or low temperature) instead of
maintaining the raw sensor measurements every few seconds
(e.g., pressure and temperature measures). These events are
typically defined by the equipment designers to summarize
many raw signals and encode the important domain
knowledge that need be communicated to the equipment users
and repair technicians. In addition, for Internet of Things (IoT)
solutions, managing these events instead of raw sensor
measurements significantly reduces storage and
communication costs. For these types of equipment,
traditional techniques for RUL estimation will not be able to
handle discrete events and are not designed to benefit from the
domain knowledge encoded in such events.

Consequently, several studies (Costello et al., 2017)(Xu et al.,
2020) explore the potential of event data for solving the RUL
estimation task. Costello et al. (Costello et al., 2017) propose
a machine learning based RUL estimation technique for gas
circulator (GC) using event data. The proposed method
captures low power refueling (LPR) events from the time
series load and vibration data which are the indicator of fuel
replenishment state for the GC. First, a classifier identifies the
states of the LPR for all historical data using the vibration
response to segment the data into three classes, {Online,
Upper, Lower}. Next, the data is further segmented into four
temporal slices, {early, mid1, mid2, late}. Finally, a classifier
identifies the likelihood of an LPR event to be in the late
temporal state which acts as an implicit RUL estimate.
Though promising, the proposed method is rigidly designed
for the GC and may not be easily applicable to other
equipment and domains. Another work in (Xu et al., 2020)
proposes an echo state network (ESN) based RUL estimation
technique using event data. The technique utilizes
synthetically generated event data considering a system made
by four non-repairable components. The task is to estimate the
RUL of the last component using the six measurements
corresponding to the events. However, the use of controlled
synthetic data may limit the use of this technique for more
complex practical event data.

Accordingly, to overcome the above challenges, we propose a
generalized event-based prognostics technique using the
discrete events (e.g., type, timestamp, etc.) captured from the

equipment to estimate the RUL of the equipment. To
demonstrate the practicality of our proposed method, we use
the well-known publicly available C-MAPSS data. More
specifically, we convert the C-MAPSS time series data to
sequential event data by careful exploration and application of
appropriate transformation techniques1. Subsequently, the
event data is used to evaluate the performance of several deep
learning and machine learning based techniques for solving
the RUL estimation task. Our results suggest that the deep
learning models, 1D-CNN, LSTM, and multi-head attention
show similar RMSE, MAE and Score performance.
Foreseeably, the XGBoost model achieve lower performance
compared to the deep learning models since the XGBoost
model fails to capture ordering information from the sequence
of events.

The rest of the paper is organized as follows. Section 2 briefly
discusses the deep learning and machine learning techniques
used in this study. Section 3 formally defines the event-based
RUL estimation problem, discusses the data pre-processing
and feature engineering technique, and explains the proposed
deep learning and machine learning based RUL solution for
event data. Finally, Section 4 discusses the experiments and
results followed by conclusion in Section 5.

2. BACKGROUND

In this paper, we utilize four machine learning and deep
learning techniques for solving the event-based RUL
estimation problem, Extended Gradient Boosting (XGBoost),
Long Short-Term Memory (LSTM) networks, one-
dimensional Convolutional Neural Networks (1D-CNN) and
Multi-head attention model. In the next few sections, we
briefly explain the above-mentioned models.

2.1. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) (Chen & Guestrin,
2016) is an efficient extension of the Gradient boosting
algorithm. Gradient boosting machine (GBM) is an ensemble
of weak learner. GBM improves the overall model
performance by training a new learner on top of a weak
learner which predicts the errors made by the weak learner.
This process is repeated an arbitrary number of times to
improve the model performance. XGBoost utilizes the
gradient boosting trees (gbtree) as the error predictor. Rather
than optimizing the gbtree predictor in a conventional way,
the XGBoost learns the gbtree to minimize the overall loss
function while preventing the model from overfitting by
adding an additional regularization term to the loss function.
Furthermore, XGBoost uses an efficient optimization
technique to improve the training speed and accuracy.
Besides, the optimization algorithm allows parallelization at
the feature level for faster computation.

1The code to generate events using C-MAPSS data is available at:
https://github.com/Mahbubul-Alam-PhD/PHM-Society-2021

Annual Conference of the Prognostics and Health Management Society 2021

 3

2.2. 1D Convolutional Neural Newtwork (1D-CNN)

Convolutional neural networks (CNNs) (Krizhevsky et al.,
2012) are one of the most successful invention in the deep
learning domain. The unique feature learning technique of
CNN from raw image data in an end-to-end fashion crowned
CNN as the de facto standard for computer vision
applications. However, the presence of CNN time-dependent
applications is relatively scarce. Yet, the 1-D variant of CNN
(Ince et al., 2016) is successfully applied in applications
involving text data, Electrocardiogram (ECG) data, vibration
data etc. The working mechanism of 1D-CNN is similar to
that of the 2D-CNN except the input data is a 1D vector and
the convolution is applied in one direction. Nonetheless,
understandably the computational complexity of 1D-CNN is
significantly lower than the 2D CNN. As such, 1D-CNN
model is suitable for real-time and small footprint device
applications.

2.3. Long Short Term Memory (LSTM) Networks

LSTM (Gers et al., 1999) is one of the most popular recurrent
neural network (RNN) architecture for handling time
dependent and text data. The conventional RNN models
suffer from vanishing/exploding gradient problem and fail to
memorize long-term dependencies. LSTM alleviates these
issues by introducing four carefully designed gate units in the
architecture known as, input modulation gate, input gate,
forget gate, and output gate. The combination of input and
forget gate constitutes the cell state which functions as the
long-term memory for the LSTM model. Due to the unique
architectural advantages, the LSTM model has been applied
in many different applications comprising time dependent
and sequential data.

2.4. Multi-head Attention Model

Conventional RNN models such as LSTM handle time
dependent data sequentially which is a major limiting factor
to achieve parallel processing. Consequently, the multi-head
attention model (Vaswani et al., 2017) is proposed to
effectively process time dependent and sequential data. The
multi-head attention model achieves parallel processing by
removing the ordering of the time dependent data. However,
the ordering information of time dependent data is a valuable
feature. Therefore, the multi-head attention model captures
the ordering information by feeding the same input multiple
times to the “multiple heads” of the model and, hence the
name multi-head. The special type of attention mechanism
used in the multi-head attention model known as self-
attention. The multi-head attention has shown state-of-the-art
performance in various applications such as machine
translation, document generation, biological sequence
analysis etc.

3. METHODOLOGY

This section discusses the methods utilized to solve the event-
based RUL estimation task. Firstly, we formally define the

event-based RUL estimation problem. Secondly, we explain
the data pre-processing techniques for the deep learning and
machine learning models. Finally, we discuss our proposed
deep learning and machine learning based models for solving
event-based RUL estimation task.

3.1. Problem Definition

Let, 𝑿 = [𝑋!, 𝑋", 	𝑋#, … , 𝑋$] be an event dataset, where
𝑋% = [𝑥%!, 𝑥%", 𝑥%#, … , 𝑥%&] , where 𝑖 = 1, 2, 3… , 𝑛 is a data
instance contains a collection of un-correlated sequential
events obtained from a pool of equipment/asset. Each
𝑥%'	represents a specific event type. Please note that both
repetition and reappearance of any event 𝑥%'	 is allowed, i.e.,
𝑥!!, 𝑥!!,	𝑥!"	 and 𝑥!!, 𝑥!",	𝑥!! are both valid sequence of
events. Also, events from any instance of 𝑿 may appear in
other instances(s), i.e., 𝑥!!, 𝑥"!,	𝑥#"	 is a valid sequence.
These sequential events may appear at any point of time
without following any specific pattern or periodicity.
Example events may include fault codes, error codes or any
predefined codes which carry a meaning for that event. A
collection of these codes collected from different equipment
in the same domain and organized in a historical fashion form
an event dataset. Such dataset may be obtained from a
database that collects all the information captured by the
device attached to the equipment. Additionally, each event
𝑥%'	may contain optional information 𝑜%' which appear along
with the event. Therefore, by definition 𝑜%' is sequential and
expressed as 𝑂% = [𝑜%!, 𝑜%", 𝑜%#, … , 𝑜%&] where 𝑜%' may be a
single value or a collection of multiple values tied to the
event. Example optional information may include the time of
the event occurrence, the part number which is affected by
the event etc. Moreover, each equipment/asset of interest may
have some unique static attributes expressed as 𝑪 =
{𝑐!, 𝑐", 𝑐#, … , 𝑐*} . Example static attributes may include
equipment manufacturer, model number, year, subcategory
etc. Finally, the event-based prognostics problem can be
defined as follows. Given, the input [𝑿,𝑶, 𝑪] for an
equipment, estimate failure time of the equipment 𝒀 =
[𝑌!, 𝑌", 𝑌#, … , 𝑌$] where, 𝑌% = {𝑦%!, 𝑦%",
𝑦%#, … , 	𝑦%&}	 and 	𝑦%! 	≥ 	𝑦%" ≥	𝑦%# ≥	… ≥ 𝑦%& . The
following equation formally defines the event-based
prognostics problem,

 𝒀 = 𝑓(𝑿,𝑶, 𝑪) (1)

where, 𝑓 is a function that performs prognostics.

3.2. Data Pre-processing and Feature Engineering

From a machine learning context, the event-based
prognostics problem can be posed as either regression or
classification task. Accordingly, we process the input and
output data to fit the regression or classification problem as
shown in Figure. 1. The input data in our event-based
prognostics problem formulation contains both sequential
and static variables. These variables can be represented by
either numerical or categorical values. Numerical values are

Annual Conference of the Prognostics and Health Management Society 2021

 4

processed with optional normalization technique. Categorical
values are processed using appropriate category to numeric
mapping technique. Besides, we convert the sequential event
data in a “1-step increment” fashion and consider the
corresponding target value of the last event in the 1-
incremented sequence as the output. This transformation of
the input converts the many-to-many mapping problem to a
many-to-one problem. Additionally, the number of instances
increase significantly which is beneficial when limited
training samples are present. Optional pre-processing of the
event sequences may be applied by keeping only the first
appearance of an event ignoring the consecutive repetition of
that event. This optional repeated event occurrence dropping
step depends on the application and may require domain
expert confirmation. For example, for a sequence

𝑥!!	, 𝑥!!, 𝑥!"	we convert it to 𝑥!!, 𝑥!"	 . However, for 𝑥!!,
𝑥!"		, 𝑥!!, we do not make any changes as the repetition of 𝑥!!
is not consecutive. Subsequently, we remove the
target/output of the corresponding repeated event. In our
example, when we convert the input 𝑥!!	, 𝑥!!, 𝑥!"	to 	𝑥!!, 𝑥!"	,
we also remove the corresponding output of the second 𝑥!!,
i.e., the output 𝑦!, 𝑦", 𝑦#	becomes 	𝑦!, 𝑦#	 . Figure. 1 further
illustrates the input and output data pre-processing for the
event-based prognostics task for the following example
which is an instance from one row of 𝑿 : input:
[(𝑥!!	, 	𝑥!!, 	𝑥!"	, 𝑥!!	, 	𝑥!#, 	𝑥!#	, 𝑥"!	, 	𝑥#!, 	𝑥!#),

(𝑜!!	, 	𝑜!!, 	𝑜!"	, 𝑜!!	, 	𝑜!#, 	𝑜!#	, 𝑜"!, 	𝑜#!, 	𝑜!#),
(𝑐!	, 	𝑐", 	𝑐#)] and target/output:
[(𝑦!!	, 	𝑦!", 	𝑦!#	, 𝑦!+	, 	𝑦!,, 	𝑦!-	, 𝑦!.	, 	𝑦!/, 	𝑦!0)].

Figure. 2. Data pre-processing for event-based prognostics.

Figure. 1. Machine Learning and Deep Learning models for RUL estimation using event data.

Annual Conference of the Prognostics and Health Management Society 2021

 5

In this paper, we consider the sequence of events and
corresponding continuous features obtained from the C-
MAPSS data as input to the machine learning and deep
learning models. The static features are absent for the C-
MAPSS event data. Further details regarding the event data
conversion process of the C-MAPSS data is provided in
Section 0.1. Furthermore, a concrete example of the input
𝑿,𝑶 and the output 𝒀 is provided in Section 4.1.

3.3. Machine Learning and Deep Learning Models for
Event-based RUL Estimation

A high-level generalized flow diagram of the machine
learning and deep learning based RUL estimation model is
shown in Figure. 1. In this study, we consider three state-of-
the-art deep learning models designed for sequential data,
LSTM, Multi-head attention and 1D-CNN. The inputs to the
deep learning models are the 1-incremented sequence of
events and the corresponding continuous features. First, the
categorical event values are converted to fixed length
compact vectors. We treat the categorical event values as
words in natural language, and hence, the fixed length vector
conversion is performed using Word2Vec. Next, the
corresponding continuous features for each event are
concatenated to the fixed length vector. The final
concatenated features are provided as input to the deep
learning models. The loss function for the deep learning
models is the root mean squared error (RMSE) i.e., we obtain
the RMS difference between the network output and the
target remaining useful life value. Subsequently, the models
are trained by minimizing the RMSE loss using Adaptive
Moment estimation (ADAM) (Kingma & Ba, 2014)
optimizer. The output of the deep learning models is the
continuous remaining useful life value. Additionally, we use
a state-of-the-art machine learning model, XGBoost to
perform the event-based RUL estimation task. The input data
processing for the XGBoost model is different than that of
the deep learning models. Only 1-incremented sequence of
events are considered as the input and converted to fixed size
TFIDF feature vectors. These features are used to train the
XGBoost model. The output of the XGBoost is the same as
the deep learning models, continuous remaining useful life
value.

4. EXPERIMENTS AND RESULTS

4.1. Event Data Generation

This section describes the event data generation process using
the popular NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset (Frederick et al.,
2007). This dataset is widely used benchmark data for the
RUL estimation task. The data has 4 subsets, FD001, FD002,
FD003, and FD004 with different number of operating
conditions and fault conditions. Specifically, the FD002 and
FD004 datasets have six operating conditions which makes
the RUL estimation task unattainable using the raw sensor
time series only without incorporating information about

operating conditions. In order to achieve that, apply a
normalization technique to the FD002 and FD004 datasets

 (a)

 (b)

 (c)

Figure. 3. (a) shows generated events for a signal with
positive trend, (b) shows generated events for a signal
with negative trend. The equipment starts in a normal

state until a failure happened in cycle 193 and (c)
shows generated events for a signal without an

obvious trend.

Annual Conference of the Prognostics and Health Management Society 2021

 6

which removes the effects of operating conditions on the
sensor data and discovers hidden trends in the sensor time
series (Q. Wang et al., 2019). Therefore, generating events
from such time series data is a complicated process. It
involves proper understanding of the data and the view of a
domain expert to identify the critical events in the time series.
Furthermore, the translation from continuous to discrete data
is crucial in generating meaningful events which has a
significant impact on the performance of failure prognostics
algorithms. Threshold discretization is one of the simplest
methods to discretized real-valued raw signals into a finite
number of discrete events. Threshold discretization converts
a real-valued vector V = (v1, v2, …, vN) to a symbolic-valued
vector E = (e1, …, eM) where M is usually a small number,
called discretization degree. We define a set of thresholds
(cut points) that assign a symbolic value to some of the real-
valued data points in the vector, V. This discretization
process mainly depends on the choice of the cut points.

One way to generate meaningful events from continuous real-
valued vector is to consider potential trends in the raw
signals. From engineering perspective, a fault-related event
might have happened in the equipment when the signal value
deviates from normal range (either decreases or increases).
We define multiple cut points based on mean and standard
deviation of each signal defined as follows.

 �̅� = 	 !

1
∑ 𝑣%1
%2! (2)

 𝜎 =	A!
1
		∑ (𝑣% −	�̅�)"1

%2! 	 (3)

where, V = (v1, v2, …, vN) represents a real-valued vector. If
the signal values have an obvious trend as the component gets
closer to a failure, the trend property can be used to define
meaningful cut points. A signal might have positive,
negative, or no trend. The followings are the rules for
defining cut points:
• For positive-trend signals, we define the following events

based on multiple cut point derived from mean and
standard variation.

∀𝑣% 						𝑖𝑓	�̅� ≤ 𝑣% <	𝑣	F + 𝜎																		𝑇ℎ𝑒𝑛	𝑒!

(4) ∀𝑣% 						𝑖𝑓	𝑣	F 	+ 	𝜎 ≤ 𝑣% <	 �̅� 	+ 	2𝜎			𝑇ℎ𝑒𝑛	𝑒"
∀𝑣% 						𝑖𝑓	𝑣	F 	+ 	2𝜎 ≤ 𝑣% <	 �̅� 	+ 3𝜎		𝑇ℎ𝑒𝑛	𝑒#
∀𝑣% 						𝑖𝑓	𝑣% ≥		 �̅� +3𝜎																										𝑇ℎ𝑒𝑛	𝑒+

• For negative-trend signals, we define the following
events.

∀𝑣% 					𝑖𝑓	𝑣	F −		𝜎 ≤ 𝑣% <	 �̅� 𝑇ℎ𝑒𝑛	𝑒!

(5)
∀𝑣% 						𝑖𝑓	𝑣	F −		2𝜎 ≤ 𝑣% < 𝑣	F𝜎											𝑇ℎ𝑒𝑛	𝑒"
∀𝑣% 						𝑖𝑓	𝑣	F −		3𝜎 ≤ 𝑣% < 𝑣	F2𝜎									𝑇ℎ𝑒𝑛	𝑒#
∀𝑣% 						𝑖𝑓	𝑣% <	 �̅� −3𝜎																									𝑇ℎ𝑒𝑛	𝑒+

• For a signal without an obvious trend, we define the
following events.

∀𝑣%						𝑖𝑓	�̅� ≤ 𝑣% <	 �̅� + 𝜎		 𝑇ℎ𝑒𝑛	𝑒!

(6)
∀𝑣% 						𝑖𝑓	�̅� + 𝜎 ≤ 𝑣% 𝑇ℎ𝑒𝑛	𝑒"
∀𝑣% 						𝑖𝑓	𝑣	F − 	𝜎 ≤ 𝑣% <	 �̅� 𝑇ℎ𝑒𝑛	𝑒#
∀𝑣%						𝑖𝑓	𝑣% ≥	𝑣	F– 	𝜎 𝑇ℎ𝑒𝑛	𝑒+

Figure. 3 (a), (b) and (c) demonstrates the event generation
procedure for a signal with positive, negative and without an
obvious trend, respectively.

Following the above procedure mentioned above, an example
of the input 𝑿,𝑶 and the output 𝒀 is as follows, 𝑿 = [['e111',
'e82', 'e111', 'e41', 'e111', 'e71'], ['e131', 'e121', 'e21', 'e121',
'e21', 'e211', 'e121']] where, “N” represents the identifier for
the event eNj and “j” represents 1, 2, 3, 4 in Equation (4)-(6);
𝑶 = [[0, 0, 2, 0, 4, 0], [0, 0, 0, 2, 2, 0, 5]] where each integer
represents the number of cycles elapsed since an event first
appeared; 𝒀 = [[158, 158, 156, 152, 150, 151], [157, 155,
155, 155, 154, 153, 150]] where each integer represents the
number of cycles remaining (RUL) to failure when an event
appears which is the target/ground truth of the RUL
estimation problem. However, in many practical industrial
applications the target value, 𝒀 is unavailable. In such cases,
the target value may be estimated by observing the data (data
centric approach), using the knowledge of a domain expert,
and/or designing a physics model of the component.

4.2. Performance Evaluation

Traditionally, in a RUL estimation task the RUL values
decreases linearly which reflects the degradation of the
system/component over time. However, in practical
applications the degradation is insignificant at the beginning
and increases towards the end of life of the system/component.
As such, we model the RUL changes over time using a piece-
wise linear target function (Babu et al., 2016) as shown in
Figure. 4. Figure. 4 demonstrates that the maximum RUL
value is fixed to a constant value and the linear degradation
starts after the system/component is used up to a certain
degree. For C-MAPSS dataset we set the maximum limit to
130 (Q. Wang et al., 2019). The performance of the proposed
event-based RUL regression models is measured using two
widely used performance metric, root mean squared error
(RMSE) and mean absolute error (MAE) as follows.

 𝑅𝑀𝑆𝐸 = A!
1
∑ (𝑦% − 𝑦3P)"1
%2! (7)

 𝑀𝐴𝐸 = !
1
∑ |𝑦% − 𝑦3P|1
%2! (8)

where, 𝑦 denotes the true RUL value and 𝑦S denotes the
estimated RUL value by the model and 𝑁 indicates the
number of test samples.

Annual Conference of the Prognostics and Health Management Society 2021

 7

Additionally, we use a score-based evaluation metric to
compare the proposed RUL estimation models as follows (Q.
Wang et al., 2019).

 𝑆𝑐𝑜𝑟𝑒 = V
∑ W𝑒4

("#$")
&' − 1X , (𝑦S − 𝑦) < 0		1

%2!

∑ W𝑒4
("#$")
&(− 1X , (𝑦S − 𝑦) ≥ 0		1

%2!

 (9)

where, 𝑦 denotes the true RUL value and 𝑦S denotes the
estimated RUL value by the model and 𝑁 indicates the
number of test samples. The significance of the score function
over the RMSE or MAE is that the score function tends to
penalize the estimated RUL values that are larger than the true
RUL value whereas, the RMSE/MAE metric treats the larger
and smaller estimated RUL values equally. From a practical
standpoint, the estimated RUL value smaller than the true
RUL value is more acceptable than the larger estimated RUL
value which indicates that the estimated RUL value is after the
component failure. Please note that the smaller RMSE, MAE
and score function values indicate better accuracies according
to the definition of the metrics shown in Equation (7) – (9).

4.3. Results and Analysis
We use four state-of-the-art deep learning and machine
learning algorithms, LSTM, Multi-head attention, 1D-CNN,
and XGBoost for solving the event-based RUL estimation
task. The input data is pre-processed following the techniques
mentioned in Section 3.2. and the RUL estimation task is
performed using the deep learning and machine learning
models explained in Section 3.3. Essentially, the input to the
deep learning and machine learning models are sequence of
events and the corresponding attributes associated with the
events. An important factor for the models to capture
meaningful information from the sequence of events is to
select an upper bound on the number of events in the
sequences. The number of events in the sequences may vary
from 1 to 5000. The events that appear at the beginning of a
very long sequence may not have meaningful impact on the
component failure. Accordingly, we run experiments to
determine the optimal number of maximum events to achieve

the best performance. Particularly, we run the multi-head
attention model for different sequence lengths. Figure. 5
shows the effect of sequence on the performance of the multi-
head attention model in terms of RMSE. Figure. 5
demonstrates that the multi-head attention model achieves the
lowest RMSE for maximum sequence length 10. The model
performance deteriorates for sequence length larger or smaller
than 10. This in turn suggests that the last few events contain
meaningful information regarding the component failure.
Therefore, we use the maximum sequence length of 10 for the
subsequent experiments.

Table 1 shows the performance comparison of four state-of-
the-art deep learning and machine learning models, LSTM,
Multi-head attention, 1D-CNN, and XGBoost in terms of
RMSE, MAE and Score function for solving the event-based
RUL estimation task using all four subsets of the C-MAPSS
data, FD001, FD002, FD003, and FD004. The
hyperparameters of the machine learning and deep learning
models are selected using random search method (Bergstra &
Bengio, 2012). Table 1 illustrates that the 1D-CNN deep
learning model achieves better RMSE, MAE and Score
compared to that of the LSTM, Multi-head attention and
XGBoost models except for the FD001 dataset. The LSTM
model achieves better RMSE and MAE value compared to the
Multi-head attention and 1D-CNN models for the FD001
dataset. The Multi-head attention model achieves better score
value for the FD001 dataset. Furthermore, Table 1
demonstrates that the XGBoost model achieves significantly
lower performance compared to all the deep learning models
in terms of RMSE, MAE and Score. This may be due to the
TFIDF feature extraction step performed on the sequence data
before feeding to the XGBoost model. TFIDF feature
extraction process loses the ordering information of the events
which may be necessary to perform the correct RUL
estimation. Moreover, the additional features related to the

Figure. 5. Effect of sequence length on the performance
(RMSE). The plot is generated by running the multi-head

attention deep learning model for different sequence
lengths.

Figure. 4. True vs Piece-wise RUL of C-MAPSS data.

Piece-wise maximum RUL is 130 cycles.

Annual Conference of the Prognostics and Health Management Society 2021

 8

events are omitted for the XGBoost model. Consequently, the
deep learning models exploit the underlying ordering
information concealed in the sequence of events. Moreover,
the deep learning models utilize the additional features
computed for each event in the sequence.

In summary, our results suggest that the deep learning models,
1D-CNN, LSTM, and multi-head attention show similar
RMSE, MAE and Score performance. Foreseeably, the
XGBoost model achieve lower performance compared to the
deep learning models since the XGBoost model fails to
capture ordering information from the sequence of events.
Additionally, the additional features associated with the
events are absent for the XGBoost model.

5. CONCLUSION
This paper introduces a novel RUL estimation framework
using sequential event data. Conventional RUL estimation
methods rely on time continuous time dependent data where
the data follows certain pattern. However, such time
dependent data is difficult to obtain in many practical
scenarios. Conversely, the event data is more common and
easier to obtain. Nevertheless, handling event data is
challenging due to the random nature of the event appearance,
lack of periodicity and absence of specific patterns. Therefore,
a sophisticated framework is essential to solve the RUL
estimation task using event data. Consequently, this paper
proposes an end-to-end event-based RUL estimation
framework. The framework involves pre-processing of the
input event data, meaningful feature extraction, and applying
suitable machine learning and deep learning techniques to
perform the RUL estimation task. The proposed pre-
processing and feature extraction technique is carefully
designed by extensive data analysis to efficiently handle the

event data which we obtained by handling real life event data.
Unfortunately, such event data is not publicly available, and
hence, we use the widely used C-MAPSS data for RUL
estimation and convert the continuous time series data to
sequential events by thoroughly analyzing the C-MAPSS
data. Afterwards, we utilize several deep learning and
machine learning techniques for solving the RUL estimation
task using the generated event data. Concisely, this paper
proposes a novel and innovative framework for effectively
handling the event-based RUL estimation task. In future, we
plan to apply the proposed framework using more complex
event data. Furthermore, we plan to generalize the framework
to be applicable in various domains involving event data.

REFERRENCES
Babu, G. S., Zhao, P., & Li, X.-L. (2016). Deep convolutional

neural network based regression approach for
estimation of remaining useful life. International
Conference on Database Systems for Advanced
Applications, 214–228.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(2).

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. Proceedings of the 22nd Acm Sigkdd
International Conference on Knowledge Discovery and
Data Mining, 785–794.

Costello, J. J. A., West, G. M., & McArthur, S. D. J. (2017).
Machine learning model for event-based prognostics in
gas circulator condition monitoring. IEEE
Transactions on Reliability, 66(4), 1048–1057.

Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s
guide for the commercial modular aero-propulsion

Table 1. Performance comparison of 4 state-of-the-art deep learning and machine learning models in terms of RMSE,
MAE and SCORE function for solving the Event-based RUL estimation task using c-mapss data (FD001-FD004). For

each dataset the best values are shown using bold fonts and the second best values are shown using italic fonts.

Metrics Models
Dataset

FD001 FD002 FD003 FD004

RMSE

1D-CNN 19.77 28.87 20.99 30.13
LSTM 18.70 29.60 21.58 30.63
Multi-head
attention 18.99 30.49 22.21 32.00

XGBoost 30.78 40.52 50.64 43.56

MAE

1D-CNN 14.31 20.47 16.17 23.51
LSTM 13.52 20.76 16.46 23.83
Multi-head
attention 14.51 22.17 17.87 25.57

XGBoost 25.23 31.61 39.17 35.94

Score

1D-CNN 1.48E+03 1.09E+04 1.61E+03 7.54E+03
Multi-head
attention 7.02E+02 1.41E+04 1.88E+03 8.64E+03

LSTM 9.09E+02 1.69E+04 2.07E+03 8.63E+03
XGBoost 4.89E+03 9.83E+04 3.41E+05 5.66E+04

Annual Conference of the Prognostics and Health Management Society 2021

 9

system simulation (C-MAPSS).
Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault

diagnosis and fault-tolerant techniques—Part I: Fault
diagnosis with model-based and signal-based
approaches. IEEE Transactions on Industrial
Electronics, 62(6), 3757–3767.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999).
Learning to forget: Continual prediction with LSTM.

Ghasemi, A., Yacout, S., & Ouali, M.-S. (2010). Parameter
estimation methods for condition-based maintenance
with indirect observations. IEEE Transactions on
Reliability, 59(2), 426–439.

Goebel, K., Daigle, M. J., Saxena, A., Roychoudhury, I.,
Sankararaman, S., & Celaya, J. R. (2017). Prognostics:
The science of making predictions.

Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M.
(2016). Real-time motor fault detection by 1-D
convolutional neural networks. IEEE Transactions on
Industrial Electronics, 63(11), 7067–7075.

Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. ArXiv Preprint
ArXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems, 25, 1097–1105.

Lim, P., Goh, C. K., Tan, K. C., & Dutta, P. (2014).
Estimation of remaining useful life based on switching
Kalman filter neural network ensemble. Rolls Royce
Singapore Singapore Singapore.

Peel, L. (2008). Data driven prognostics using a Kalman filter
ensemble of neural network models. 2008
International Conference on Prognostics and Health
Management, 1–6.

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. 2008 International Conference
on Prognostics and Health Management, 1–9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).
Attention is all you need. ArXiv Preprint
ArXiv:1706.03762.

Wang, Q., Zheng, S., Farahat, A., Serita, S., & Gupta, C.
(2019). Remaining useful life estimation using
functional data analysis. 2019 Ieee International
Conference on Prognostics and Health Management
(Icphm), 1–8.

Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity-
based prognostics approach for remaining useful life
estimation of engineered systems. 2008 International
Conference on Prognostics and Health Management,
1–6.

Xu, M., Baraldi, P., Al-Dahidi, S., & Zio, E. (2020). Fault
prognostics by an ensemble of Echo State Networks in
presence of event based measurements. Engineering
Applications of Artificial Intelligence, 87, 103346.

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017).
Long short-term memory network for remaining useful
life estimation. 2017 IEEE International Conference
on Prognostics and Health Management (ICPHM),
88–95.

Mahbubul Alam is a senior research scientist at the
Industrial AI Laboratory at Hitachi America, Ltd. R&D
where he is working on developing innovative algorithms for
solving real life practical problems in the industrial domain.
He completed his Ph.D. from the Vision Lab of the
Department of Electrical and Computer Engineering at the
Old Dominion University (ODU), Norfolk, Virginia, USA in
December 2018. His doctoral dissertation contributed
developing novel machine learning, more specifically deep
learning algorithms for solving complex computer vision
problems. Mahbubul received his BS and MS degree in
Computer Science and Engineering from Jahangirnagar
University, Bangladesh in 2008 and 2011, respectively. He
has secured highest grade in both BS and MS final
examination. He was awarded “Gold Medal” for obtaining
the highest Cumulative GPA in the whole University during
his undergrad study. He has more than 30 high quality
publications and more than 1000 google scholar citations. His
research interests are machine learning, deep learning,
computer vision, predictive maintenance, visual inspection
and other interesting and challenging problems in the
industrial domain.

Laleh Jalali is a senior Machine Learning scientist with an
extensive background in applying advanced machine
learning, deep learning, and data mining techniques in
different domains. At Hitachi, Laleh has been involved in
many customer co-creation projects where the team owns the
end-to-end process, from research to production models. Her
professional interests focus on event-based frameworks,
predictive maintenance, natural language understanding, and
healthcare analytics. She published key elements of her work
in "Event Mining for Explanatory Modeling" book, published
by ACM in collaboration with Morgan and Claypool. Before
Hitachi, Laleh graduated with a PhD in Computer Science
from the University of California, Irvine.

Dipanjan Ghosh is a Senior Research Scientist at the
Industrial AI Lab, Hitachi America Ltd. (Research and
Development), Santa Clara, CA. He earned his Ph.D. in
Mechanical Engineering in 2017 from University at Buffalo.
His research interest includes application of data-driven
method in the industrial domain, specifically in prognostics.

Ahmed Farahat is a principal research scientist at the
Industrial AI Laboratory at Hitachi America, Ltd. R&D
where he is working on developing innovative algorithms for
solving real-world problems in industrial and societal
domains. Ahmed has more than fifteen years research
experience in academic and industrial environments.
Previously, Ahmed was a research scientist at the Big Data

Annual Conference of the Prognostics and Health Management Society 2021

 10

Laboratory at Hitachi America, Ltd. R&D. He also worked
as postdoctoral fellow at the University of Waterloo and a
research engineer at IBM Egypt. He also holds a Ph.D. degree
from the University of Waterloo and M.Sc. and B.Sc. degrees
from Cairo University, all in Computer Engineering.
Ahmed's research interests lie in the areas of machine
learning and data mining, and their applications to industrial
use cases. Ahmed co-invented more than 15 patents and co-
authored more than 30 high-quality publications.

Chetan Gupta works in the field of Industrial AI. During
his career, he has played multiple roles: from a pure
researcher, to leading multiple research and development
teams towards successful execution of AI projects, to a
thought leader laying out a vison of the future. At Hitachi, he
heads the Industrial AI Lab and co-leads the Global AI CoE.
He is proud to be a part of one of the strongest teams in the
area of Industrial AI. The team consisting of data scientists,
architects and developers is building fundamental horizontal
technologies for Industrial AI, building solutions for verticals
such as mobility, manufacturing, mining, energy
management systems, and opening new frontiers in industrial
analytics. Chetan has over 100 papers and patents in the area
of Industrial AI, data mining/machine learning, data stream
systems, complex event processing, workload management,
etc. Chetan has a Ph.D. in Mathematics and M.S. in
Mathematical Computer Science and Chemical Engineering
from University of Illinois, Chicago.

