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ABSTRACT 
Prognostics aims to predict the degradation of equipment by 
estimating their remaining useful life (RUL) and/or the failure 
probability within a specific time horizon. The high demand 
of equipment prognostics in the industry have propelled 
researchers to develop robust and efficient prognostics 
techniques. Among data driven techniques for prognostics, 
machine learning and deep learning (DL) based techniques, 
particularly Recurrent Neural Networks (RNNs) have gained 
significant attention due to their ability of effectively 
representing the degradation progress by employing dynamic 
temporal behaviors. RNNs are well known for handling 
sequential data, especially continuous time series sequential 
data where the data follows certain pattern. Such data is 
usually obtained from sensors attached to the equipment. 
However, in many scenarios, sensor data is not readily 
available and often very tedious to acquire. Conversely, event 
data is more common and can easily be obtained from the 
error logs saved by the equipment and transmitted to a 
backend for further processing. Nevertheless, performing 
prognostics using event data is substantially more difficult 
than that of the sensor data due to the unique nature of event 
data. Though event data is sequential, it differs from other 
seminal sequential data such as time series and natural 
language in the following manner, i) unlike time series, events 
are aperiodic and scarce, i.e., the appearance of events lacks 
periodicity; ii) unlike natural languages, event data do not 
follow any specific linguistic rule. Additionally, there may be 
a significant variability in the event types appearing within the 
same sequence.  Therefore, this paper proposes an RUL 
estimation framework to effectively handle the intricate and 
novel event data. The proposed framework takes discrete 
events generated by an equipment (e.g., type, time, etc.) as 
input, and generates for each new event an estimate of the 
remaining operating cycles in the life of a given component. 
To evaluate the efficacy of our proposed method, we conduct 
extensive experiments using benchmark datasets such as the 
C-MAPSS data after converting the time-series data in these 
datasets to sequential event data. Furthermore, we propose 

 
several deep learning and machine learning based solution for 
the event-based RUL estimation problem. Our results suggest 
that the deep learning models, 1D-CNN, LSTM, and multi-
head attention show similar RMSE,  MAE and Score 
performance. Foreseeably, the XGBoost model achieve lower 
performance compared to the deep learning models since the 
XGBoost model fails to capture ordering information from the 
sequence of events.  

1. INTRODUCTION 
Prognostics is concerned with the prediction of future health 
and performance and any potential failure. Prognostics 
techniques are typically applied when a fault or degradation is 
detected in the unit to predict when a failure or severe 
degradation will happen. The problem of predicting a failure 
or estimating the remaining useful life of an equipment has 
been extensively studied in the Prognostics and Health 
Management (PHM) research community (Goebel et al., 
2017).  

Failure Prediction (FP) can be defined as predicting whether a 
monitored unit will fail within a given time horizon. The 
prediction methods receive as input the raw measurements 
from the unit and produce as output the probability of a certain 
failure type. For different failure types, multiple models can 
be constructed. If there are many failure examples, 
classification models can be learned from the data to 
distinguish between failure and non-failure cases. 

On the other hand, Remaining Useful Life (RUL) estimation 
is concerned with estimating how much time or how many 
operating cycles are left in the life of the unit till a failure event 
of a given type happens. The prediction methods receive as 
input the raw measurements from the unit and produce as 
output a continuous output that reflect the remaining useful 
life (in time or operating cycles units). RUL estimation is the 
most-studied problem in the PHM literature and one of the few 
problems in which there are benchmark datasets such as the 
C-MAPSS dataset from NASA (Saxena et al., 2008) and other 
datasets with fewer number of run-to-failure examples (Gao 
et al., 2015). If there are many run-to-failure examples, the 
RUL problem can be formulated as a regression problem. 
Traditionally several regression-based approaches have been 
used to solve the RUL problem such as neural networks (Peel, 
2008)(Lim et al., 2014), Hidden Markov Models (Ghasemi et 
al., 2010), and similarity-based methods. (T. Wang et al., 
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2008). Recently, many deep learning models have been 
applied to the RUL problem. For instance, Deep 
Convolutional Neural Network (CNN) (Babu et al., 2016) 
applies the convolution and pooling filters along the temporal 
dimension over the multi-channel sensor data. Long Short-
Term Memory (LSTM) (Zheng et al., 2017) uses multiple 
layers of LSTM cells in combination with standard feed 
forward layers to discover hidden patterns from sensor and 
operational data. 

However, most of the existing techniques for RUL are 
designed to work on cases where the available data are 
multivariate time-series of sensor measurements that were 
recorded before failures. For most of the equipment, such 
sensor measurements are not available. Instead, most of 
equipment control units record and communicate events that 
reflect important changes in the underlying sensors (e.g., an 
event to reflect high pressure or low temperature) instead of 
maintaining the raw sensor measurements every few seconds 
(e.g., pressure and temperature measures). These events are 
typically defined by the equipment designers to summarize 
many raw signals and encode the important domain 
knowledge that need be communicated to the equipment users 
and repair technicians. In addition, for Internet of Things (IoT) 
solutions, managing these events instead of raw sensor 
measurements significantly reduces storage and 
communication costs. For these types of equipment, 
traditional techniques for RUL estimation will not be able to 
handle discrete events and are not designed to benefit from the 
domain knowledge encoded in such events. 

Consequently, several studies (Costello et al., 2017)(Xu et al., 
2020) explore the potential of event data for solving the RUL 
estimation task. Costello et al. (Costello et al., 2017) propose 
a machine learning based RUL estimation technique for gas 
circulator (GC) using event data. The proposed method 
captures low power refueling (LPR) events from the time 
series load and vibration data which are the indicator of fuel 
replenishment state for the GC. First, a classifier identifies the 
states of the LPR for all historical data using the vibration 
response to segment the data into three classes, {Online, 
Upper, Lower}. Next, the data is further segmented into four 
temporal slices, {early, mid1, mid2, late}. Finally, a classifier 
identifies the likelihood of an LPR event to be in the late 
temporal state which acts as an implicit RUL estimate. 
Though promising, the proposed method is rigidly designed 
for the GC and may not be easily applicable to other 
equipment and domains. Another work in (Xu et al., 2020) 
proposes an echo state network (ESN) based RUL estimation 
technique using event data. The technique utilizes 
synthetically generated event data considering a system made 
by four non-repairable components. The task is to estimate the 
RUL of the last component using the six measurements 
corresponding to the events. However, the use of controlled 
synthetic data may limit the use of this technique for more 
complex practical event data.  

Accordingly, to overcome the above challenges, we propose a 
generalized event-based prognostics technique using the 
discrete events (e.g., type, timestamp, etc.) captured from the 

equipment to estimate the RUL of the equipment. To 
demonstrate the practicality of our proposed method, we use 
the well-known publicly available C-MAPSS data. More 
specifically, we convert the C-MAPSS time series data to 
sequential event data by careful exploration and application of 
appropriate transformation techniques1. Subsequently, the 
event data is used to evaluate the performance of several deep 
learning and machine learning based techniques for solving 
the RUL estimation task. Our results suggest that the deep 
learning models, 1D-CNN, LSTM, and multi-head attention 
show similar RMSE, MAE and Score performance. 
Foreseeably, the XGBoost model achieve lower performance 
compared to the deep learning models since the XGBoost 
model fails to capture ordering information from the sequence 
of events.  

The rest of the paper is organized as follows. Section 2 briefly 
discusses the deep learning and machine learning techniques 
used in this study. Section 3 formally defines the event-based 
RUL estimation problem, discusses the data pre-processing 
and feature engineering technique, and explains the proposed 
deep learning and machine learning based RUL solution for 
event data. Finally, Section 4 discusses the experiments and 
results followed by conclusion in Section 5. 

2. BACKGROUND  

In this paper, we utilize four machine learning and deep 
learning techniques for solving the event-based RUL 
estimation problem, Extended Gradient Boosting (XGBoost), 
Long Short-Term Memory (LSTM) networks, one-
dimensional Convolutional Neural Networks (1D-CNN) and 
Multi-head attention model. In the next few sections, we 
briefly explain the above-mentioned models. 

2.1. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 
2016) is an efficient extension of the Gradient boosting 
algorithm. Gradient boosting machine (GBM) is an ensemble 
of weak learner. GBM improves the overall model 
performance by training a new learner on top of a weak 
learner which predicts the errors made by the weak learner. 
This process is repeated an arbitrary number of times to 
improve the model performance. XGBoost utilizes the 
gradient boosting trees (gbtree) as the error predictor. Rather 
than optimizing the gbtree predictor in a conventional way, 
the XGBoost learns the gbtree to minimize the overall loss 
function while preventing the model from overfitting by 
adding an additional regularization term to the loss function. 
Furthermore, XGBoost uses an efficient optimization 
technique to improve the training speed and accuracy. 
Besides, the optimization algorithm allows parallelization at 
the feature level for faster computation. 

1The code to generate events using C-MAPSS data is available at: 
https://github.com/Mahbubul-Alam-PhD/PHM-Society-2021 
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2.2. 1D Convolutional Neural Newtwork (1D-CNN) 

Convolutional neural networks (CNNs) (Krizhevsky et al., 
2012) are one of the most successful invention in the deep 
learning domain. The unique feature learning technique of 
CNN from raw image data in an end-to-end fashion crowned 
CNN as the de facto standard for computer vision 
applications. However, the presence of CNN time-dependent 
applications is relatively scarce. Yet, the 1-D variant of CNN 
(Ince et al., 2016) is successfully applied in applications 
involving text data, Electrocardiogram (ECG) data, vibration 
data etc. The working mechanism of 1D-CNN is similar to 
that of the 2D-CNN except the input data is a 1D vector and 
the convolution is applied in one direction. Nonetheless, 
understandably the computational complexity of 1D-CNN is 
significantly lower than the 2D CNN. As such, 1D-CNN 
model is suitable for real-time and small footprint device 
applications. 

2.3. Long Short Term Memory (LSTM) Networks 

LSTM (Gers et al., 1999) is one of the most popular recurrent 
neural network (RNN) architecture for handling time 
dependent and text data. The conventional RNN models 
suffer from vanishing/exploding gradient problem and fail to 
memorize long-term dependencies. LSTM alleviates these 
issues by introducing four carefully designed gate units in the 
architecture known as, input modulation gate, input gate, 
forget gate, and output gate. The combination of input and 
forget gate constitutes the cell state which functions as the 
long-term memory for the LSTM model. Due to the unique 
architectural advantages, the LSTM model has been applied 
in many different applications comprising time dependent 
and sequential data.   

2.4. Multi-head Attention Model 

Conventional RNN models such as LSTM handle time 
dependent data sequentially which is a major limiting factor 
to achieve parallel processing. Consequently, the multi-head 
attention model (Vaswani et al., 2017) is proposed to 
effectively process time dependent and sequential data. The 
multi-head attention model achieves parallel processing by 
removing the ordering of the time dependent data. However, 
the ordering information of time dependent data is a valuable 
feature. Therefore, the multi-head attention model captures 
the ordering information by feeding the same input multiple 
times to the “multiple heads” of the model and, hence the 
name multi-head. The special type of attention mechanism 
used in the multi-head attention model known as self-
attention. The multi-head attention has shown state-of-the-art 
performance in various applications such as machine 
translation, document generation, biological sequence 
analysis etc. 

3. METHODOLOGY  

This section discusses the methods utilized to solve the event-
based RUL estimation task. Firstly, we formally define the 

event-based RUL estimation problem. Secondly, we explain 
the data pre-processing techniques for the deep learning and 
machine learning models. Finally, we discuss our proposed 
deep learning and machine learning based models for solving 
event-based RUL estimation task. 

3.1. Problem Definition 

Let, 𝑿 = [𝑋!, 𝑋", 	𝑋#, … , 𝑋$]  be an event dataset, where 
𝑋% = [𝑥%!, 𝑥%", 𝑥%#, … , 𝑥%&] , where 𝑖 = 1, 2, 3… , 𝑛  is a data 
instance contains a collection of un-correlated sequential 
events obtained from a pool of equipment/asset. Each 
𝑥%'	represents a specific event type. Please note that both 
repetition and reappearance of any event 𝑥%'	 is allowed, i.e., 
𝑥!!,  𝑥!!,	𝑥!"	 and 𝑥!!,  𝑥!",	𝑥!!  are both valid sequence of 
events. Also, events from any instance of 𝑿 may appear in 
other instances(s), i.e.,  𝑥!!,  𝑥"!,	𝑥#"	 is a valid sequence. 
These sequential events may appear at any point of time 
without following any specific pattern or periodicity. 
Example events may include fault codes, error codes or any 
predefined codes which carry a meaning for that event. A 
collection of these codes collected from different equipment 
in the same domain and organized in a historical fashion form 
an event dataset. Such dataset may be obtained from a 
database that collects all the information captured by the 
device attached to the equipment. Additionally, each event 
𝑥%'	may contain optional information 𝑜%' which appear along 
with the event. Therefore, by definition 𝑜%' is sequential and 
expressed as 𝑂% = [𝑜%!, 𝑜%", 𝑜%#, … , 𝑜%&] where 𝑜%'  may be a 
single value or a collection of multiple values tied to the 
event. Example optional information may include the time of 
the event occurrence, the part number which is affected by 
the event etc. Moreover, each equipment/asset of interest may 
have some unique static attributes expressed as 𝑪 =
{𝑐!, 𝑐", 𝑐#, … , 𝑐*} . Example static attributes may include 
equipment manufacturer, model number, year, subcategory 
etc. Finally, the event-based prognostics problem can be 
defined as follows. Given, the input [𝑿,𝑶, 𝑪]  for an 
equipment, estimate failure time of the equipment 𝒀 =
[𝑌!, 𝑌", 𝑌#, … , 𝑌$]  where,  𝑌% = {𝑦%!, 𝑦%",
𝑦%#, … , 	𝑦%&}	 and 	𝑦%! 	≥ 	𝑦%" ≥	𝑦%# ≥	… ≥ 𝑦%& . The 
following equation formally defines the event-based 
prognostics problem,  

 
                       𝒀 = 𝑓(𝑿,𝑶, 𝑪)                                               (1) 

where, 𝑓 is a function that performs prognostics. 

3.2. Data Pre-processing and Feature Engineering 

From a machine learning context, the event-based 
prognostics problem can be posed as either regression or 
classification task. Accordingly, we process the input and 
output data to fit the regression or classification problem as 
shown in Figure. 1. The input data in our event-based 
prognostics problem formulation contains both sequential 
and static variables. These variables can be represented by 
either numerical or categorical values. Numerical values are 
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processed with optional normalization technique. Categorical 
values are processed using appropriate category to numeric 
mapping technique. Besides, we convert the sequential event 
data in a “1-step increment” fashion and consider the 
corresponding target value of the last event in the 1-
incremented sequence as the output. This transformation of 
the input converts the many-to-many mapping problem to a 
many-to-one problem. Additionally, the number of instances 
increase significantly which is beneficial when limited 
training samples are present. Optional pre-processing of the 
event sequences may be applied by keeping only the first 
appearance of an event ignoring the consecutive repetition of 
that event. This optional repeated event occurrence dropping 
step depends on the application and may require domain 
expert confirmation. For example, for a sequence 

𝑥!!	, 𝑥!!, 𝑥!"	we convert it to 𝑥!!,  𝑥!"	 . However, for 𝑥!!, 
𝑥!"		, 𝑥!!, we do not make any changes as the repetition of 𝑥!! 
is not consecutive. Subsequently, we remove the 
target/output of the corresponding repeated event. In our 
example, when we convert the input 𝑥!!	, 𝑥!!, 𝑥!"	to 	𝑥!!, 𝑥!"	, 
we also remove the corresponding output of the second 𝑥!!, 
i.e., the output 𝑦!, 𝑦", 𝑦#	becomes 	𝑦!, 𝑦#	 . Figure. 1 further 
illustrates the input and output data pre-processing for the 
event-based prognostics task for the following example 
which is an instance from one row of 𝑿 : input: 
[(𝑥!!	, 	𝑥!!, 	𝑥!"	, 𝑥!!	, 	𝑥!#, 	𝑥!#	, 𝑥"!	, 	𝑥#!, 	𝑥!#	), 

(𝑜!!	, 	𝑜!!, 	𝑜!"	, 𝑜!!	, 	𝑜!#, 	𝑜!#	, 𝑜"!, 	𝑜#!, 	𝑜!#	), 
(𝑐!	, 	𝑐", 	𝑐#	)]  and target/output: 
[(𝑦!!	, 	𝑦!", 	𝑦!#	, 𝑦!+	, 	𝑦!,, 	𝑦!-	, 𝑦!.	, 	𝑦!/, 	𝑦!0	)]. 
 

 
 

Figure. 2. Data pre-processing for event-based prognostics. 

 

 
 

Figure. 1. Machine Learning and Deep Learning models for RUL estimation using event data. 
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In this paper, we consider the sequence of events and 
corresponding continuous features obtained from the C-
MAPSS data as input to the machine learning and deep 
learning models. The static features are absent for the C-
MAPSS event data. Further details regarding the event data 
conversion process of the C-MAPSS data is provided in 
Section 0.1. Furthermore, a concrete example of the input 
𝑿,𝑶 and the output 𝒀 is provided in Section 4.1. 

3.3. Machine Learning and Deep Learning Models for 
Event-based RUL Estimation 

A high-level generalized flow diagram of the machine 
learning and deep learning based RUL estimation model is 
shown in Figure. 1. In this study, we consider three state-of-
the-art deep learning models designed for sequential data, 
LSTM, Multi-head attention and 1D-CNN. The inputs to the 
deep learning models are the 1-incremented sequence of 
events and the corresponding continuous features. First, the 
categorical event values are converted to fixed length 
compact vectors. We treat the categorical event values as 
words in natural language, and hence, the fixed length vector 
conversion is performed using Word2Vec. Next, the 
corresponding continuous features for each event are 
concatenated to the fixed length vector. The final 
concatenated features are provided as input to the deep 
learning models. The loss function for the deep learning 
models is the root mean squared error (RMSE) i.e., we obtain 
the RMS difference between the network output and the 
target remaining useful life value. Subsequently, the models 
are trained by minimizing the RMSE loss using Adaptive 
Moment estimation (ADAM) (Kingma & Ba, 2014) 
optimizer. The output of the deep learning models is the 
continuous remaining useful life value. Additionally, we use 
a state-of-the-art machine learning model, XGBoost to 
perform the event-based RUL estimation task. The input data 
processing for the XGBoost model is different than that of 
the deep learning models. Only 1-incremented sequence of 
events are considered as the input and converted to fixed size 
TFIDF feature vectors. These features are used to train the 
XGBoost model. The output of the XGBoost is the same as 
the deep learning models, continuous remaining useful life 
value. 

4. EXPERIMENTS AND RESULTS 

4.1. Event Data Generation  

This section describes the event data generation process using 
the popular NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset (Frederick et al., 
2007). This dataset is widely used benchmark data for the 
RUL estimation task. The data has 4 subsets, FD001, FD002, 
FD003, and FD004 with different number of operating 
conditions and fault conditions. Specifically, the FD002 and 
FD004 datasets have six operating conditions which makes 
the RUL estimation task unattainable using the raw sensor 
time series only without incorporating information about 

operating conditions. In order to achieve that, apply a 
normalization technique to the FD002 and FD004 datasets 

 
                                         (a) 

 
                                         (b) 

 

      (c) 

Figure. 3. (a) shows generated events for a signal with 
positive trend, (b) shows generated events for a signal 
with negative trend. The equipment starts in a normal 

state until a failure happened in cycle 193 and (c) 
shows generated events for a signal without an 

obvious trend. 
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which removes the effects of operating conditions on the 
sensor data and discovers hidden trends in the sensor time 
series (Q. Wang et al., 2019). Therefore, generating events 
from such time series data is a complicated process. It 
involves proper understanding of the data and the view of a 
domain expert to identify the critical events in the time series. 
Furthermore, the translation from continuous to discrete data 
is crucial in generating meaningful events which has a 
significant impact on the performance of failure prognostics 
algorithms.  Threshold discretization is one of the simplest 
methods to discretized real-valued raw signals into a finite 
number of discrete events. Threshold discretization converts 
a real-valued vector V = (v1, v2, …, vN) to a symbolic-valued 
vector E = (e1, …, eM) where M is usually a small number, 
called discretization degree. We define a set of thresholds 
(cut points) that assign a symbolic value to some of the real-
valued data points in the vector, V. This discretization 
process mainly depends on the choice of the cut points.  

One way to generate meaningful events from continuous real-
valued vector is to consider potential trends in the raw 
signals. From engineering perspective, a fault-related event 
might have happened in the equipment when the signal value 
deviates from normal range (either decreases or increases). 
We define multiple cut points based on mean and standard 
deviation of each signal defined as follows. 

 
                                 �̅� = 	 !

1
∑ 𝑣%1
%2!                                     (2) 

   

                        𝜎 =	A!
1
		∑ (𝑣% −	�̅�)"1

%2! 	                           (3) 

 
where, V = (v1, v2, …, vN) represents a real-valued vector. If 
the signal values have an obvious trend as the component gets 
closer to a failure, the trend property can be used to define 
meaningful cut points. A signal might have positive, 
negative, or no trend. The followings are the rules for 
defining cut points: 
• For positive-trend signals, we define the following events 

based on multiple cut point derived from mean and 
standard variation. 
 
∀𝑣% 						𝑖𝑓	�̅� ≤ 𝑣% <	𝑣	F + 𝜎																		𝑇ℎ𝑒𝑛	𝑒! 

(4) ∀𝑣% 						𝑖𝑓	𝑣	F 	+ 	𝜎 ≤ 𝑣% <	 �̅� 	+ 	2𝜎			𝑇ℎ𝑒𝑛	𝑒" 
∀𝑣% 						𝑖𝑓	𝑣	F 	+ 	2𝜎 ≤ 𝑣% <	 �̅� 	+ 3𝜎		𝑇ℎ𝑒𝑛	𝑒# 
∀𝑣% 						𝑖𝑓	𝑣% ≥		 �̅� +3𝜎																										𝑇ℎ𝑒𝑛	𝑒+ 

• For negative-trend signals, we define the following 
events. 

 
∀𝑣% 					𝑖𝑓	𝑣	F  −		𝜎 ≤ 𝑣% <	 �̅�               𝑇ℎ𝑒𝑛	𝑒! 

(5) 
∀𝑣% 						𝑖𝑓	𝑣	F  −		2𝜎 ≤ 𝑣% < 𝑣	F𝜎											𝑇ℎ𝑒𝑛	𝑒" 
∀𝑣% 						𝑖𝑓	𝑣	F  −		3𝜎 ≤ 𝑣% < 𝑣	F2𝜎									𝑇ℎ𝑒𝑛	𝑒# 
∀𝑣% 						𝑖𝑓	𝑣% <	 �̅� −3𝜎																									𝑇ℎ𝑒𝑛	𝑒+ 

• For a signal without an obvious trend, we define the 
following events. 
 
∀𝑣%						𝑖𝑓	�̅� ≤ 𝑣% <	 �̅� + 𝜎		              𝑇ℎ𝑒𝑛	𝑒! 

(6) 
∀𝑣% 						𝑖𝑓	�̅� + 𝜎 ≤ 𝑣%                        𝑇ℎ𝑒𝑛	𝑒" 
∀𝑣% 						𝑖𝑓	𝑣	F − 	𝜎 ≤ 𝑣% <	 �̅�             𝑇ℎ𝑒𝑛	𝑒# 
∀𝑣%						𝑖𝑓	𝑣% ≥	𝑣	F– 	𝜎                       𝑇ℎ𝑒𝑛	𝑒+ 

 
Figure. 3 (a), (b) and (c) demonstrates the event generation 
procedure for a signal with positive, negative and without an 
obvious trend, respectively. 
 
Following the above procedure mentioned above, an example 
of the input 𝑿,𝑶 and the output 𝒀 is as follows, 𝑿 = [['e111', 
'e82', 'e111', 'e41', 'e111', 'e71'], ['e131', 'e121', 'e21', 'e121', 
'e21', 'e211', 'e121']] where, “N” represents the identifier for 
the event eNj and “j” represents 1, 2, 3, 4 in Equation (4)-(6);  
𝑶 = [[0, 0, 2, 0, 4, 0], [0, 0, 0, 2, 2, 0, 5]] where each integer 
represents the number of cycles elapsed since an event first 
appeared;  𝒀 = [[158, 158, 156, 152, 150, 151], [157, 155, 
155, 155, 154, 153, 150]] where each integer represents the 
number of cycles remaining (RUL) to failure when an event 
appears which is the target/ground truth of the RUL 
estimation problem. However, in many practical industrial 
applications the target value, 𝒀 is unavailable. In such cases, 
the target value may be estimated by observing the data (data 
centric approach), using the knowledge of a domain expert, 
and/or designing a physics model of the component.  
 
4.2. Performance Evaluation  

Traditionally, in a RUL estimation task the RUL values 
decreases linearly which reflects the degradation of the 
system/component over time. However, in practical 
applications the degradation is insignificant at the beginning 
and increases towards the end of life of the system/component. 
As such, we model the RUL changes over time using a piece-
wise linear target function (Babu et al., 2016) as shown in  
Figure. 4. Figure. 4 demonstrates that the maximum RUL 
value is fixed to a constant value and the linear degradation 
starts after the system/component is used up to a certain 
degree. For C-MAPSS dataset we set the maximum limit to 
130 (Q. Wang et al., 2019). The performance of the proposed 
event-based RUL regression models is measured using two 
widely used performance metric, root mean squared error 
(RMSE) and mean absolute error (MAE) as follows. 

                             𝑅𝑀𝑆𝐸 = A!
1
∑ (𝑦% − 𝑦3P)"1
%2!                  (7) 

                            𝑀𝐴𝐸 = !
1
∑ |𝑦% − 𝑦3P|1
%2!                        (8) 

where, 𝑦  denotes the true RUL value and 𝑦S  denotes the 
estimated RUL value by the model and 𝑁  indicates the 
number of test samples. 
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Additionally, we use a score-based evaluation metric to 
compare the proposed RUL estimation models as follows (Q. 
Wang et al., 2019). 

           𝑆𝑐𝑜𝑟𝑒 = V
∑ W𝑒4

("#$")
&' − 1X , (𝑦S − 𝑦) < 0		1

%2!

∑ W𝑒4
("#$")
&( − 1X , (𝑦S − 𝑦) ≥ 0		1

%2!

           (9) 

where, 𝑦  denotes the true RUL value and 𝑦S  denotes the 
estimated RUL value by the model and 𝑁  indicates the 
number of test samples. The significance of the score function 
over the RMSE or MAE is that the score function tends to 
penalize the estimated RUL values that are larger than the true 
RUL value whereas, the RMSE/MAE metric treats the larger 
and smaller estimated RUL values equally. From a practical 
standpoint, the estimated RUL value smaller than the true 
RUL value is more acceptable than the larger estimated RUL 
value which indicates that the estimated RUL value is after the 
component failure. Please note that the smaller RMSE, MAE 
and score function values indicate better accuracies according 
to the definition of the metrics shown in Equation (7) – (9). 

4.3. Results and Analysis  
We use four state-of-the-art deep learning and machine 
learning algorithms, LSTM, Multi-head attention, 1D-CNN, 
and XGBoost for solving the event-based RUL estimation 
task. The input data is pre-processed following the techniques 
mentioned in Section 3.2. and the RUL estimation task is 
performed using the deep learning and machine learning 
models explained in Section 3.3. Essentially, the input to the 
deep learning and machine learning models are sequence of 
events and the corresponding attributes associated with the 
events. An important factor for the models to capture 
meaningful information from the sequence of events is to 
select an upper bound on the number of events in the 
sequences. The number of events in the sequences may vary 
from 1 to 5000. The events that appear at the beginning of a 
very long sequence may not have meaningful impact on the 
component failure. Accordingly, we run experiments to 
determine the optimal number of maximum events to achieve 

the best performance. Particularly, we run the multi-head 
attention model for different sequence lengths. Figure. 5 
shows the effect of sequence on the performance of the multi-
head attention model in terms of RMSE. Figure. 5 
demonstrates that the multi-head attention model achieves the 
lowest RMSE for maximum sequence length 10. The model 
performance deteriorates for sequence length larger or smaller 
than 10. This in turn suggests that the last few events contain 
meaningful information regarding the component failure. 
Therefore, we use the maximum sequence length of 10 for the 
subsequent experiments. 

Table 1 shows the performance comparison of four state-of-
the-art deep learning and machine learning models, LSTM, 
Multi-head attention, 1D-CNN, and XGBoost in terms of 
RMSE, MAE and Score function for solving the event-based 
RUL estimation task using all four subsets of the C-MAPSS 
data, FD001, FD002, FD003, and FD004. The 
hyperparameters of the machine learning and deep learning 
models are selected using random search method (Bergstra & 
Bengio, 2012). Table 1 illustrates that the 1D-CNN deep 
learning model achieves better RMSE, MAE and Score 
compared to that of the LSTM, Multi-head attention and 
XGBoost models except for the FD001 dataset. The LSTM 
model achieves better RMSE and MAE value compared to the 
Multi-head attention and 1D-CNN models for the FD001 
dataset. The Multi-head attention model achieves better score 
value for the FD001 dataset. Furthermore, Table 1 
demonstrates that the XGBoost model achieves significantly 
lower performance compared to all the deep learning models 
in terms of RMSE, MAE and Score. This may be due to the 
TFIDF feature extraction step performed on the sequence data 
before feeding to the XGBoost model. TFIDF feature 
extraction process loses the ordering information of the events 
which may be necessary to perform the correct RUL 
estimation. Moreover, the additional features related to the 

 

Figure. 5. Effect of sequence length on the performance 
(RMSE). The plot is generated by running the multi-head 

attention deep learning model for different sequence 
lengths. 

 

 
Figure. 4. True vs Piece-wise RUL of C-MAPSS data. 

Piece-wise maximum RUL is 130 cycles. 
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events are omitted for the XGBoost model. Consequently, the 
deep learning models exploit the underlying ordering 
information concealed in the sequence of events. Moreover, 
the deep learning models utilize the additional features 
computed for each event in the sequence. 

In summary, our results suggest that the deep learning models, 
1D-CNN, LSTM, and multi-head attention show similar 
RMSE, MAE and Score performance. Foreseeably, the 
XGBoost model achieve lower performance compared to the 
deep learning models since the XGBoost model fails to 
capture ordering information from the sequence of events. 
Additionally, the additional features associated with the 
events are absent for the XGBoost model. 

5. CONCLUSION  
This paper introduces a novel RUL estimation framework 
using sequential event data. Conventional RUL estimation 
methods rely on time continuous time dependent data where 
the data follows certain pattern. However, such time 
dependent data is difficult to obtain in many practical 
scenarios. Conversely, the event data is more common and 
easier to obtain. Nevertheless, handling event data is 
challenging due to the random nature of the event appearance, 
lack of periodicity and absence of specific patterns. Therefore, 
a sophisticated framework is essential to solve the RUL 
estimation task using event data. Consequently, this paper 
proposes an end-to-end event-based RUL estimation 
framework. The framework involves pre-processing of the 
input event data, meaningful feature extraction, and applying 
suitable machine learning and deep learning techniques to 
perform the RUL estimation task. The proposed pre-
processing and feature extraction technique is carefully 
designed by extensive data analysis to efficiently handle the 

event data which we obtained by handling real life event data. 
Unfortunately, such event data is not publicly available, and 
hence, we use the widely used C-MAPSS data for RUL 
estimation and convert the continuous time series data to 
sequential events by thoroughly analyzing the C-MAPSS 
data. Afterwards, we utilize several deep learning and 
machine learning techniques for solving the RUL estimation 
task using the generated event data. Concisely, this paper 
proposes a novel and innovative framework for effectively 
handling the event-based RUL estimation task. In future, we 
plan to apply the proposed framework using more complex 
event data. Furthermore, we plan to generalize the framework 
to be applicable in various domains involving event data. 
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