Steps toward prognostics of faults in bearings
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Assessment of the remaining useful life of a rolling-element bearing is a key element in rotating machines prognostics. Evaluation of the bearing remaining useful life (RUL) requires diagnosis of the fault existence, estimation of its size and estimation of the time interval until it reaches a critical size. A concept for bearing RUL estimation is proposed. The main insights which led to the concept development are reviewed. The study focuses on estimation of spall size located in one of the bearing races. A new approach for estimation of spall size in bearing races is developed based on physical insights obtained from results of a general bearing dynamic model. Analytical modeling of the interaction between the spall and the rolling element enables the development of an autonomous generic method for spall size estimation. In this paper the principles for spall size estimation are described. The new method was applied to experimental data including different spall sizes on inner and outer races. The estimation shows satisfactory results with errors up to 20%.
How to Cite
##plugins.themes.bootstrap3.article.details##
bearing fault diagnosis, Vibration
Epps, I. (1991). An investigation into vibrations excited by discrete faults in rolling element bearings (Unpublished doctoral dissertation). University of Canterbury. Mechanical Engineering. Gazizulin, D., Klein, R. & Bortman, J. (2017). Towards a Physics Based foundation for the estimation of bearings RUL, Proceedings of Asia Pacific Conference of the Prognostics and Health Management Society, Jeju, Korea, July, 2017.
Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical systems and signal processing, 23(3), 724-739. Kogan, G., Bortman, J., & Klein, R. (2017). A new model for spall-rolling-element interaction. Nonlinear Dynamics, 87(1), 219-236.
Kogan, G., Klein, R., Kushnirsky, A., & Bortman, J. (2015). Toward a 3d dynamic model of a faulty duplex ball bearing. Mechanical Systems and Signal Processing, 54, 243–258. Kogan, G., Madar, E., Klein, R & Bortman, J. (2016). Spall size estimation in bearing races based on vibration analysis. Annual conference of the European Conference of the Prognostics and Health Management Society, Bilbao, Spain, July 2016.
L. Cui, N. Wu, C. Ma, H. Wang, Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary, Mech. Syst. Signal Process. 68 (2016) 34–43.
Madar, E., Kogan, G., Klein, R & Bortman, J. (2016). Estimation of spall size in bearing inner race based on vibration analysis. The Thirteenth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Paris, France, October, 2016. Madar, E., Kogan, G., Klein, R. & Bortman, J. (2017). An analytical model for rolling-element-spall interaction in bearing inner race. Proceedings of First World Congress on Condition Monitoring Conference, London, England, June, 2017.
Mendelovich, M., Sanders, Y., Kogan, G., Battat, M., Klein, R., & Bortman, J. (2014). Characterization of fault size in bearings. Annual conference of the Prognostics and Health Management Society, Fort Worth, Texas, September 2014.
N. Sawalhi, R. Randall, Vibration response of spalled rolling element bearings: Observations, simulations and signal processing techniques to track the spall size, Mech. Syst. Signal Process. 25 (3) (2011) 846–870.
S. Zhao, L. Liang, G. Xu, J. Wang, W. Zhang, Quantitative diagnosis of a spall-like fault of a rolling element bearing by empirical mode decomposition and the approximate entropy method, Mech. Syst. Signal Process. 40 (1) (2013) 154–177.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.