Study of the degradation of rolling element bearings with artificial dents

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jan 13, 2026
Theo Tselonis Valentius Wirjana Thomas Hughes Zhongxiao Peng

Abstract

Contact fatigue in rolling element bearings (REBs) is a common surface degradation and failure mechanism. A better understanding of this process, especially the evolution of tribological features and resultant dynamic responses, is critical for developing effective tools to monitor degradation and predict remaining useful life. This paper investigates the relationship between the geometry of seeded faults – specifically their shape and size – and bearing performance under grease-lubricated conditions. Two bearings with different fault shapes and sizes were tested. To study the degradation process, moulds and images of the fault area were collected at different intervals to capture the gradual progression of wear. The acceleration root mean square (RMS) value of vibrations was used as a real-time indicator to detect significant changes in bearing dynamics throughout the degradation process. This study provides valuable experimental data and insights into the degradation processes of rolling element bearings when they are subjected to initial defects related to manufacturing or contamination, under grease-lubricated conditions. This knowledge is crucial for developing effective real-time techniques for monitoring the degradation process.

Abstract 27 | PDF Downloads 23

##plugins.themes.bootstrap3.article.details##

Keywords

N/A

References
Allison, B., Pandkar, A. (2018) Critical factors for determining a first estimate of fatigue limit of bearing steels under rolling contact fatigue. Int J Fatigue, 117, 396–406. doi:10.1016/j.ijfatigue.2018.08.004.
Bogdański, S., Brown, M. W. (2002) Modelling the three-dimensional behaviour of shallow rolling contact fatigue cracks in rails. Wear, 253, 17–25. doi:10.1016/S0043-1648(02)00078-9.
Branch, N. A., et al. (2010) Stress field evolution in a ball bearing raceway fatigue spall. J ASTM Int, 7, pages. doi:10.1520/JAI102529.
Cheng, W. H. S. L. M., Cheng, H. S. and Keer, L. M. (1994) Experimental investigation on rolling/sliding contact fatigue crack initiation with artificial defects. Tribology Transactions, 37(1), 1–12.
El Laithy, M., et al. (2019) Further understanding of rolling contact fatigue in rolling element bearings - A review. Tribol Int, 140, 105849. doi:10.1016/j.triboint.2019.105849.
El-Thalji, I., Jantunen, E. (2014) A descriptive model of wear evolution in rolling bearings. Eng Fail Anal, 45, 204–24. doi:10.1016/j.engfailanal.2014.06.004.
Golmohammadi, Z., Sadeghi, F. (2019) A coupled multibody finite element model for investigating effects of surface defects on rolling contact fatigue. J Tribol, 141, pages. doi:10.1115/1.4042270.
Halme, J., Andersson, P. (2010) Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics - State of the art. Proc Inst Mech Eng Part J J Eng Tribol, 224, pages. doi:10.1243/13506501JET656.
Kaneta, M., Nishino, T. and Sakai, T. (2006) A study on surface crack initiation of rolling bearings under rolling–sliding contact. Wear, 261(11–12), 1252–1262.
Kang, J. H., Hosseinkhani, B., Rivera-Díaz-del-castillo, P. E. J. (2012) Rolling contact fatigue in bearings: Multiscale overview. Mater Sci Technol, 28, 44–9. doi:10.1179/174328413X13758854832157.
Makino, T., et al. (2016) Effect of defect shape on rolling contact fatigue crack initiation and propagation in high strength steel. Int J Fatigue, 92, pages. doi:10.1016/j.ijfatigue.2016.02.015.
Morales-Espejel, G. E., Gabelli, A. (2011) The behavior of indentation marks in rolling–sliding elastohydrodynamically lubricated contacts. Tribol Trans, 54, 589–606. doi:10.1080/10402004.2011.582571.
Morales-Espejel, G. E., Gabelli, A. (2015) The progression of surface rolling contact fatigue damage of rolling bearings with artificial dents. Tribol Trans, 58, 418–31. doi:10.1080/10402004.2014.983251.
Murakami, Y., Kaneta, M., Yatsuzuka, H. (1985) Analysis of surface crack propagation in lubricated rolling contact. ASLE Trans, 28, pages. doi:10.1080/05698198508981595.
Nélias, D., et al. (1999) Role of inclusions, surface roughness and operating conditions on rolling contact fatigue. J Tribol, 121, pages. doi:10.1115/1.2833927.
Nélias, D., Ville, F. (2000) Detrimental effects of debris dents on rolling contact fatigue. J Tribol, 122, 55–64.
Rosado, L., et al. (2010) Rolling contact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, part I: Experimental results. Tribol Trans, 53, pages. doi:10.1080/10402000903226366.
Rycerz, P., Kadiric, A. (2019) The influence of slide–roll ratio on the extent of micropitting damage in rolling–sliding contacts pertinent to gear applications. Tribol Lett, 67, pages. doi:10.1007/s11249-019-1174-7.
Ville, F., Nélias, D. (1999) An experimental study on the concentration and shape of dents caused by spherical metallic particles in ehl contacts. Tribol Trans, 42, 231–40. doi:10.1080/10402009908982213.
Xu, G., Sadeghi, F., Hoeprich, M. R. (1998) Dent initiated spall formation in EHL rolling/sliding contact. J Tribol, 120, 453–62. doi:10.1115/1.2834570.
Zaretsky, E. V., Poplawski, J. V., Peters, S. M. (1996) Comparison of life theories for rolling-element bearings. Tribol Trans, 39, 237–48. doi:10.1080/10402009608983525.
Zhang, H., et al. (2022) A benchmark of measurement approaches to track the natural evolution of spall severity in rolling element bearings. Mechanical Systems and Signal Processing, 166, 108466.
Zhuang, S. (2021) Tribological investigation on the degradation process of contact fatigue in rolling bearings. MPhil thesis, UNSW Sydney.
Section
Regular Session Papers