Digital Twin of Built Structures assisted by Computer Vision Techniques: Overview and Preliminary Results

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 4, 2023
Yasutaka Narazaki

Abstract

Digital Twin is an effective platform for analyzing, visualizing, and interpreting the condition of as-built structures based on sensor measurement data. Based on the data inflow from the as-built structures, the associated models (typically finite element models) are updated, and/or the full behaviors of the structures are replicated in the virtual space. Despite its potential, field implementation of digital twin concepts often faces challenge, because the specific forms of digital twin, such as sensor types/locations, structural model development, and data fusion algorithms, depend strongly on the case-specific objectives. Focusing on the digital twin concepts assisted by computer vision techniques, this research aims at facilitating the implementation of those concepts by presenting the definition, setting, and preliminary results of digital twin in different application contexts, including post-earthquake building assessment and structural health monitoring based on multiple types of measurements. This research is expected to contribute to the broader impact of digital twin concepts in the structural engineering community.

Abstract 274 | PDF Downloads 423

##plugins.themes.bootstrap3.article.details##

Keywords
References
Section