A new approach to multivariate statistical process control and its application to wastewater treatment process monitoring
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper presents a new process monitoring and fault diagnosis approach based on a modified Multivariate Statistical Process Control (MSPC) and evaluates its applicability to municipal wastewater treatment process monitoring. A conventional MSPC based on Principal Component Analysis (PCA) is firstly adjusted to have an easy-to-understand user interface and then a new yet simplified decomposable diagnostic model is introduced. The developed user interface is designed to seamlessly connect MSPC to existing process monitoring system adopting the so-called trend graphs. The proposed diagnostic model is derived in a constructive way by aggregating small size models with one input or two inputs to improve tractability of the diagnostic model. The effectiveness of the modified MSPC is illustrated through some offline and on-line experiments by using a set of real multivariate process data at a municipal wastewater treatment plant.