Development of a space exploration rover digital twin for damage detection

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 4, 2023
Lucio Pinello Marco Giglio Claudio Cadini Giuseppe Francesco De Luca

Abstract

This study focuses on the creation of a digital twin of a space exploration rover to perform damage detection. The digital twin incorporates various subsystems of real rovers to accurately simulate the rover’s behaviour. Damage detection is performed by introducing damages into the digital twin and comparing signals obtained in healthy and damaged conditions. By using the multiphysics model created by integrating different subsystems, the effect of damages can be observed in other subsystems of the rover. The study aims to demonstrate the potentiality of a digital twin for damage detection, reducing the risk of mission failure and data loss.

Abstract 274 | PDF Downloads 337

##plugins.themes.bootstrap3.article.details##

Keywords

digital twin, damage detection, health monitoring

References
Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., . . . Kettle, J. (2022, 02). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159, 112160. doi: 10.1016/j.rser.2022.112160

Armstrong, M. M. (n.d.). Cheat sheet: What is Digital Twin? (Available online.)

AzureSpace®. (n.d.). SPACE Solar Cells. (Available online.)

Bradford, E., Rabinovitch, J., Abid, M. (2019). Regolith particle erosion of material in aerospace enviornments. In Ieee aerospace conference.

Callas, J. L. (n.d.). Mars exploration rover spirit - end of mission report (Tech. Rep.). NASA.

Castelluccio, M. (n.d.). Interplanetary Twins. (Available online.)

Cook, J.-R., C., A. D., Johnson, A., Hautaluoma, G. (n.d.). NASA Readies Perseverance Mars Rover’s Earthly Twin. (Available online.)

ESA. (n.d.). ExoMars rover testing moves ahead and deep down. (Available online.)

Ferrando, E., Zanella, P., Riva, S., Damonte, G., Romani, R., Ferrante, L. (2016). Photovoltaic assemblies for the power generation of the exomars missions. In Euro- pean space power conference.

Hatakenaka, R., Fujita, K., Nonomura, T., Takai, M., Toyota, H., Satoh, T., Sugit, H. (2015). Preliminary thermal design of the japanese mars rover mission. In Interna- tional conference on environmental systems.

Kempenaar, J. G., Novak, K. S., Redmond, M. J., Farias, E., Singh, K., Wagner, M. F. (2018). Detailed surface thermal design of the mars 2020 rover. In International conference on environmental systems.

Krantz, T., Cameron, Z. (2019). Development of pericyclic gearbox for roving application. In International design engineering tecnhical conference.

Landis, G., Kerslake, T., Jenkins, P., Scheiman, D. (2004, 12). Mars solar power. doi: 10.2514/6.2004-5555

maxon®. (n.d.-a). 5 years: NASA Mars rovers keep on run- ning and running and running. (Available online.)

maxon®. (n.d.-b). ECX FLAT 32 L, Φ32 mm, brushless, with Hall sensors. (Available online.)

Miller, S. (n.d.). Mars Rover Model in Simscape. (Available online.)

M.I.T. (n.d.). Digital twins improve real-life manufacturing. (Available online.)

NASA. (n.d.). Rover Temperature Controls. (Available on- line.)

Olson, C. F., Matthies, L. H., Wright, J. R., Li, R., Di, K. (2006). Visual terrain mapping for mars exploration. Computer Vision and Image Understanding, 15(105), 73-85.

Saft®. (n.d.). Mp 176065 xtd rechargeable li-ion cell (Tech. Rep.). Total.

Weston, S. (Ed.). (2023). State-of-the-art of small spacecraft technology. NASA - Small Spacecraft Systems Virtual Institute.
Section
Special Session Papers