Data-driven satellite monitoring method applicable to various telemetry

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 4, 2023
Noriyasu Omata Seiji Tsutsumi Abe Masaharu Iku Shinohara

Abstract

It is difficult to detect signs of faults for the rule-based health monitoring systems currently installed on artificial satellites in principle, and manual monitoring of satellite telemetry is conducted. However, due to lack of human resources, much of the data is left not yet well reviewed. In this study, a systematic telemetry monitoring method that screens anomalous ones applicable to various time-series telemetry is proposed. The proposed method estimates the normal range of future telemetry values by focusing on quantile statistics of each telemetry. The demonstrative application results to the real telemetry data are also reported.

Abstract 209 | PDF Downloads 204

##plugins.themes.bootstrap3.article.details##

Keywords

artificial satellites, change detection, time-series data

References
Barreyre, C., Boussouf, L., Cabon, B., Laurent, B., & Loubes, J.-M. (2019). Statistical methods for outlier detection in space telemetries. In Space Operations: Inspiring Humankind’s Future (p. 513-547). Springer International Publishing. doi: 10.1007/978-3-030-11536-4 20

Carlton, A., Morgan, R., Lohmeyer, W., & Cahoy, K. (2018). Telemetry fault-detection algorithms: Applications for spacecraft monitoring and space environment sensing. Journal of Aerospace Information Systems, 15(5), 239- 252. doi: 10.2514/1.I010587 GPy. (since 2012).

GPy: A Gaussian process framework in python. http://github.com/SheffieldML/ GPy.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., & Soderstrom, T. (2018). Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (p. 387-395). doi: 10.1145/3219819.3219845

Pilastre, B., Boussouf, L., D’Escrivan, S., & Tourneret, J.- Y. (2020). Anomaly detection in mixed telemetry data using a sparse representation and dictionary learning. Signal Processing, 168, 107320. doi: 10.1016/j.sigpro .2019.107320

Rasmussen, C. E., & Williams, C. K. (2005). Gaussian processes for machine learning. The MIT Press. doi: 10.7551/mitpress/3206.001.0001

Takaki, R., Honda, H., Mizutani, M., & Hirose, T. (2009). Development of automatic monitoring and diagnostic system for space science satellites. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. doi: 10.2514/ 6.2009-461

Tariq, S., Lee, S., Shin, Y., Lee, M. S., Jung, O., Chung, D., & Woo, S. S. (2019). Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (p. 2123-2133). doi: 10.1145/ 3292500.3330776

Yairi, T., Nakatsugawa, M., Hori, K., Nakasuka, S., Machida, K., & Ishihama, N. (2004). Adaptive limit checking for spacecraft telemetry data using regression tree learning. In 2004 IEEE International Conference on Systems, Man and Cybernetics (Vol. 6, p. 5130-5135). doi: 10.1109/ICSMC.2004.1401008

Yairi, T., Takeishi, N., Oda, T., Nakajima, Y., Nishimura, N., & Takata, N. (2017). A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1384-1401. doi: 10.1109/TAES.2017.2671247
Section
Special Session Papers