Fatigue Life Prediction Based on Walker and Masson Models

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 14, 2017
Jie Zhou Hong-Zhong Huang Bo Zheng Zhaochun Peng

Abstract

It is known that mean stress has significant effects on fatigue life prediction, and various modifications have been developed to explain the mean stress effect, yet seldom accounting for mean stress sensitivity. The Smith-Watson-
Topper (SWT) model is one of the most widely used models that can give satisfactory predictions, and it is viewed as a particular case of Walker model when the material parameter γ = 0.5. The Walker equation takes both the mean stress effect and sensitivity into account and can give accurate predictions in many fatigue programs. In this paper, based on the Walker model and Masson model, a modified model accounting for both the mean stress effect and the mean stress sensitivity is proposed to estimate the fatigue life. Three sets of experimental data are used to validate the applicability of the proposed model. A comparison between the SWT model and Morrow model is also made. The
results show that the proposed model has more accurate predictions than the others.

Abstract 69 | PDF Downloads 588

##plugins.themes.bootstrap3.article.details##

Keywords

PHM

References
Arcari, A., De Vita, R., and Dowling, N. E. (2009). Mean stress relaxation during cyclic straining of high strength aluminum alloys. International Journal of Fatigue, 31(11), 1742-1750.
Burger, R., and Lee, Y. L. (2013). Assessment of the meanstress sensitivity factor method in stress-life fatigue predictions. Journal of Testing and Evaluation, 41(2), 1-7.
Colin, J., Fatemi, A., and Taheri, S. (2010). Fatigue behavior of stainless steel 304L including strain hardening, prestraining, and mean stress effects. Journal of Engineering Materials and Technology, 132(2), 021008.
Dowling, N. E., Calhoun, C. A., and Arcari, A. (2009). Mean stress effects in stress ‐ life fatigue and the Walker equation. Fatigue & Fracture of Engineering Materials & Structures, 32(3), 163-179.
Dowling, N. E. (2004). Mean stress effects in stress-life and strain-life fatigue. SAE Technical Paper.
Hessler, W., Müller, H., Weiss, B., and Schmidt, H. (1981). Fatigue limit of Cu and Al up to 1010 loading cycles. Ultrasonic fatigue (Proc. AIME), New York, 245-63.
Ince, A., and Glinka, G. (2011). A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structures, 34(11), 854-867.
Jaske, C. E., Feddersen, C. E., Davis, K. B., and Rice, R. C. (1973) Analysis of Fatigue, Fatigue Crack Propagation and Fracture Data. Final Report to NASA-Langley Research Center, NASA Cr-132332.
Klubberg, F., Klopfer, I., Broeckmann, C., Berchtold, R., and Beiss, P. (2011). Fatigue testing of materials and components under mean load conditions. In Anales de Mecánica de la Fractura, 1, 419-424.
Korsunsky, A. M., Dini, D., Dunne, F. P., and Walsh, M. J. (2007). Comparative assessment of dissipated energy and other fatigue criteria. International Journal of Fatigue, 29(9), 1990-1995.
Kwofie, S. (2001). An exponential stress function for predicting fatigue strength and life due to mean stresses. International Journal of Fatigue, 23(9), 829-836.
Kwofie, S., and Chandler, H. D. (2001). Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. International Journal of Fatigue, 23(4), 341- 345.
Lorenzo, F., and Laird, C. (1984). A new approach to predicting fatigue life behavior under the action of mean stresses. Materials Science and Engineering, 62(2), 205-210.
Lv, Z., Huang, H. Z., Wang, H. K., Gao, H., and Zuo, F. J. (2016). Determining the Walker exponent and developing a modified Smith-Watson-Topper parameter model. Journal of Mechanical Science and Technology., 30(3), 1129-1137.
Manson, S. S. (1965). Fatigue: a complex subject-some simple approximations. Experimental mechanics, 5(7), 193-226.
Morrow, J. D., and Socie, D. F. (1980). Review of contemporary approaches to fatigue damage analysis. Risk and Failure Analysis for Improved Performance and Reliability, Edited by Burke, J. J. and Weiss, V., Plenum Publishing Corporation.
Niesłony, A., and Böhm, M. (2013). Mean stress effect correction using constant stress ratio S-N curves. International Journal of Fatigue, 52, 49-56.
Nihei, M., Heuler, P., Boller, C., and Seeger, T. (1986). Evaluation of mean stress effect on fatigue life by use of damage parameters. International Journal of Fatigue, 8(3), 119-126.
Schijve, J. (2001). Fatigue of structures and materials. Dordrecht: Kluwer Academic.
Sendeckyj, G. P. (2001). Constant life diagrams-a historical review. International Journal of Fatigue, 23(4), 347- 353.
Shi, C. X., Yan, M. G., and Zhu, Z. Q. (2001). China aeronautical materials handbook. Beijing: Standards Press of China.
Strizak, J. P., and Mansur, L. K. (2003). The effect of mean stress on the fatigue behavior of 316 LN stainless steel in air and mercury. Journal of Nuclear Materials, 318, 151-156.
Wang, W. G. (2006) Research on prediction model for disc LCF life and experiment assessment methodology. Nanjing: Nanjing University of Aeronautics and Astronautics.
Wehner, T., and Fatemi, A. (1991) Effects of mean stress on fatigue behavior of a hardened carbon steel. International Journal of Fatigue, 13(3), 241-248.
Zhao, T., and Jiang, Y. (2008). Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30(5), 834-849.
Zheng X. L., Wang H., Tan J. H., and Yi X. W. (2013). Material fatigue theory and engineering application. Beijing, Science Press.
Zhu, S. P., Lei, Q., Huang, H. Z., Yang, Y. J., and Peng, W. (2016). Mean stress effect correction in strain energybased fatigue life prediction of metals. International Journal of Damage Mechanics, DOI: 1056789516651920.
Zhu, S. P., and Huang, H. Z. (2010). A generalized frequency separation–strain energy damage function model for low cycle fatigue-creep life prediction. Fatigue & Fracture of Engineering Materials & Structures, 33(4), 227-237.
Zhu, S. P., Huang, H. Z., He, L. P., Liu, Y., and Wang, Z. (2012). A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Engineering Fracture Mechanics, 90, 89-100.
Zhu, S. P., Huang, H. Z., Li, Y., and He, L. (2012). A novel viscosity-based model for low cycle fatigue–creep life prediction of high-temperature structures. International Journal of Damage Mechanics, 21(7), 1076-1099.
Zhu, S. P., Huang, H. Z., Liu, Y., Yuan, R., and He, L. (2013). An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory. International Journal of Damage Mechanics, 22(4), 556-571.
Section
Regular Session Papers