Instantaneous Detection of the Occurrence of Mechanical Resonances

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 14, 2017
Won Joon Song

Abstract

In this paper, the kurtosis of time-domain signal is suggested as a detector of a mechanical resonance (MR). The statistical quantity is dependent on the shape of the statistical distribution of a given signal. Mechanical structures under environment noise vibrate in random pattern. If an eigenmode of the structure is stimulated, the sinusoidal pattern starts to develop in the vibration signal. Once MR occurs, near-resonance fluctuation becomes prominent in the time trace of the signal and alters the noisy signal of unimodal distribution into a near-sinusoidal oscillation of bimodal distribution. The value of kurtosis of the time-domain signal drops from around 3.0, then approaches close to 1.5 as MR progresses. The feasibility of kurtosis as an indicator of MR was tested with the piezoelectric responses obtained from microfabricated beams under acoustic stimulations. The test showed that the statistical parameter instantaneously detected the occurrence of MR elapsing quickly in this case. Investigation with the experimental data justified the use of the parameter as an instantaneous indicator of MR.

Abstract 201 | PDF Downloads 43

##plugins.themes.bootstrap3.article.details##

Keywords

PHM

References
Barszcz, T., & Randall, R. B. (2009). Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing, 23(4), 1352-1365. doi: http://dx.doi.org/10.1016/j.ymssp.2008.07.019
Bendat, J. S., & Piersol, A. G. (2011). Random Data: Analysis and Measurement Procedures: Wiley.
Brandt, A. (2011). Statistics and Random Processes Noise and Vibration Analysis (pp. 63-86): John Wiley & Sons, Ltd.
Davis, R. I., Qiu, W., & Hamernik, R. P. (2009). Role of the Kurtosis Statistic in Evaluating Complex Noise Exposures for the Protection of Hearing. Ear & Hearing, 30(5), 628-634.
DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292-307. doi: 10.1037/1082-989X.2.3.292
Goley, G. S., Song, W. J., & Kim, J. H. (2011). Kurtosis corrected sound pressure level as a noise metric for risk assessment of occupational noises. The Journal of the Acoustical Society of America, 129(3), 1475-1481.
Hamernik, R. P., Qiu, W., & Davis, B. (2003). The effects of the amplitude distribution of equal energy exposures on noise-induced hearing loss: The kurtosis metric. The Journal of the Acoustical Society of America, 114(1), 386-395.
Henderson, D., Morata, T., & Hamernik, R. (2001). Considerations on assessing the risk of workrelated hearing loss (Vol. 3).
Jang, J., Kim, S., Sly, D. J., O’leary, S. J., & Choi, H. (2013). MEMS piezoelectric artificial basilar membrane with passive frequency selectivity for short pulse width signal modulation. Sensors and Actuators A: Physical, 203(0), 6-10. doi:
http://dx.doi.org/10.1016/j.sna.2013.08.017
Jemielniak, K., & Otman, O. (1998a). Catastrophic tool failure detection based on acoustic emission signal analysis. CIRP Annals-Manufacturing Technology, 47(1), 31-34.
Jemielniak, K., & Otman, O. (1998b). Tool failure detection based on analysis of acoustic emission signals. Journal of Materials Processing Technology, 76(1), 192-197.
Kim, S., Song, W. J., Jang, J., Jang, J. H., & Choi, H. (2013). Mechanical frequency selectivity of an artificial basilar membrane using a beam array with narrow supports. Journal of Micromechanics and Microengineering, 23(9), 095018.
Lei, S.-F., Ahroon, W. A., & Hamernik, R. P. (1994). The application of frequency and time domain kurtosis to the assessment of hazardous noise exposures. The Journal of the Acoustical Society of America, 96(3), 1435-1444.
Lei, S.-F., Ahroon, W. A., & Hamernik, R. P. (1996). Application of Frequency and Time Domain Kurtosis to Assessment of Complex, Time-Varying Noise Exposure. In A. Axelsson, H. M. Borchgrevink, R. P. Hamernik, P.-A. Hellstrom, D.
Henderson, & R. J. Salvi (Eds.), Scientific Basis of Noise-Induced Hearing Loss (pp. 213-228). New York: Thieme Medical Publishers.
Qiu, W., Hamernik, R. P., & Davis, B. (2006). The kurtosis metric as an adjunct to energy in the prediction of trauma from continuous, nonGaussian noise exposures. The Journal of the Acoustical Society of America, 120(6), 3901-3906.
Williams, T., Ribadeneira, X., Billington, S., & Kurfess, T. (2001). ROLLING ELEMENT BEARING DIAGNOSTICS IN RUN-TO-FAILURE LIFETIME TESTING. Mechanical Systems and Signal Processing, 15(5), 979-993. doi:
http://dx.doi.org/10.1006/mssp.2001.1418
Zakrajsek, J. J., Townsend, D. P., & Decker, H. J. (1993). An analysis of gear fault detection methods as applied to pitting fatigue failure data: DTIC Document.
Zhao, Y.-m., Qiu, W., Zeng, L., Chen, S.-s., Cheng, X.-r., Davis, R. I., & Hamernik, R. P. (2010). Application of the Kurtosis Statistic to the Evaluation of the Risk of Hearing Loss in Workers Exposed to High-Level Complex Noise. [Article]: Ear & Hearing August 2010;31(4):527-532.
Section
Regular Session Papers