A comparative study of particle filters for prognostics implementation in industry
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Prognostics is an engineering discipline aiming at predicting
the Remaining Useful Life (RUL) of an industrial system or
item. Accuracy and confident prediction of the RUL are very
meaningful and important for anticipating failure, controlling
system operational efficiency as well as optimizing maintenance
operations. Given the important role of the prognostics
or RUL prediction, a number of prognostics approaches has
been proposed and successfully applied in various industry.
Among these approaches, particle filters (PF) are more and
more studied and employed thank to their powerful performance
and their flexibility in predicting the RUL of systems
non-linear and non-Gaussian. However, the prediction performance
strongly depends on the application contexts and
the type of particle filter utilized. The choice of particle filters
is therefore a critical step in real industrial applications. The
paper focuses on a comparison of the three different PF techniques
(Sampling importance resampling, Auxiliary particle
filter, and Regularized particle filter) to support the critical
step. The performance of the three PF techniques is compared
by considering different degradation models, noises level. In
addition, the computing time is also analyzed through different
numerical examples.
How to Cite
##plugins.themes.bootstrap3.article.details##
particle filters;, Remaining Useful Life;
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.