
On the use of particle filters for prognostics in industrial applications
Hai Canh VU 1, Phuc DO2, Mayank Shekhar JHA 3, Didier THEILLIOL 4, and Flavien PEYSSON5

1,2,3,4 Laboratoire CRAN, University of Lorraine, 54506 Vandoeuvre Cedex, France
hai-canh.vu@univ-lorraine.fr

5 PREDICT Company, 19, avenue de la Fort de Haye, CS 10508, 54519 Vandoeuvre Cedex, France
flavien.peysson@predict.fr

ABSTRACT

Prognostics is an engineering discipline aiming at predicting
the Remaining Useful Life (RUL) of an industrial system or
item. Accuracy and confident prediction of the RUL are very
meaningful and important for anticipating failure, controlling
system operational efficiency as well as optimizing mainte-
nance operations. Given the important role of the prognostics
or RUL prediction, a number of prognostics approaches has
been proposed and successfully applied in various industry.
Among these approaches, particle filters (PF) are more and
more studied and employed thank to their powerful perfor-
mance and their flexibility in predicting the RUL of systems
non-linear and non-Gaussian. However, the prediction per-
formance strongly depends on the application contexts and
the type of particle filter utilized. The choice of particle filters
is therefore a critical step in real industrial applications. The
paper focuses on a comparison of the three different PF tech-
niques (Sampling importance resampling, Auxiliary particle
filter, and Regularized particle filter) to support the critical
step. The performance of the three PF techniques is compared
by considering different degradation models, noises level. In
addition, the computing time is also analyzed through differ-
ent numerical examples.

1. INTRODUCTION

Prognostics is an engineering discipline aiming at predict-
ing the future health of a component/system and generate its
RUL, which is defined as the estimated time that the com-
ponent/system can be expected to continue to serve its in-
tended function, with taking into account the knowledge of
the component/system, the historical and the current moni-
toring data, and future information related to mission profile,
maintenance plan, etc (Voisin, Levrat, Cocheteux, & Iung,
2010). The prognostic process is structured on three mains
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steps: construction and fusion health indicators, RUL defini-
tion and formalization, RUL prediction using different prog-
nostic approaches. The process starts by constructing compo-
nent/system health indicators from the monitoring data. The
health indicators represent the component/system health state
defined as the rate and the extent of degradation from the
expected normal operation condition (degradation indicator)
or the degree of functional performance (performance indi-
cator). According to the complexity of the considered sys-
tem, the number of the system health indicators may be high.
Thus, to reduce the dimensional space and predict the RUL
effectively, the constructed health indicators are usually ag-
gregated by using different fusion techniques to provide the
most representative health indicators. The RUL is then de-
fined and formalized based on the representative health in-
dicators and their thresholds. Finally, prognostic approaches
such as Markov models, Artificial neural networks, Kalman
filter, Particle filters, etc., are applied to estimate or predict
the RUL (Vogl, Weiss, & Helu, 2016).

Among these approaches, particle filters (PF) are more and
more studied and implemented for the prognostics of indus-
trial component/system thanks to their powerful performance
and their flexibility in predicting the RUL of systems non-
linear and non-Gaussian (An, Choi, & Kim, 2013; Zio &
Peloni, 2011; Jouin, Gouriveau, Hissel, Péra, & Zerhouni,
2016). Their main idea is to use a set of samples (particles)
with associated weights to represent the state density func-
tion. The state estimates are then computed based on these
particle and weights. The sequential importance sampling
is employed to reduce the number of particles which are re-
quired to approximate the state probability distribution. PF is
therefore more efficient than the classical Monte Carlo. Given
these advantages of PFs, different PF techniques have been
investigated and proposed to improve the PF performance in
real industrial applications. The three main PF techniques
are Sampling importance resampling (SIR), Auxiliary parti-
cle filter (APF), and Regularized particle filter (RPF). Given
the similar main idea, the performance of the three PF tech-
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niques are not the same and strongly depends on the industrial
application contexts. The choice of particle filter techniques
is therefore a critical step in real industrial applications. Un-
fortunately, very few papers in the literature focus on the com-
parison of these PF techniques from a practical point of view.
This paper then focuses on a comparison of the three differ-
ent PF techniques (SIR, APF, and RPF) to support the critical
step. The performance of the three PF techniques is compared
by considering two application settings: the precision of the
system degradation models and noises levels. In addition, the
computing time is also analyzed through different numerical
examples.

The rest sections of the paper are organized as follows: Sec-
tion 2 is devoted to present the main idea of particle filters;
detailed descriptions of SIR, APF and RPF are found in Sec-
tion 3; Section 4 focuses on explaining how the PF tech-
niques can be used for the RUL prediction of industrial com-
ponent/system and describing the selected comparison crite-
ria; the comparison is done through different numerical ex-
amples presented in Section 5; finally, some conclusions and
perspectives are made in Section 6.

2. FUNDAMENTAL PRINCIPLES OF PARTICLE FILTERS

Before comparison of the three different PF techniques (SIR,
APF, and RPF), we will present shortly the fundamental prin-
ciples of particle filters in general, and that of each PF tech-
niques in particular. This section focuses firstly on the math-
ematical descriptions of the particle filter approach.

To illustrate the basic principles of state estimation and pre-
diction using particle filters and its commonly employed vari-
ants, a dynamic system is considered with system state at time
step is represented by the vector:

xk = fk(xk−1, vk−1) (1)
yk = hk (xk, wk) (2)

where, fk being state transition function (possibly non-linear);
hk being the observation function that describes measure-
ments yk which are obtained sequentially at successive time
steps; vk and wk being respectively the process noise se-
quence and measurement noise sequence of known distribu-
tion and assumed independent and identically distributed (i.i.d).

Their equivalent representation can be obtained as:

xk = fk(xk−1, vk−1)↔ p(xk|xk−1) (3)

and
yk = hk (xk, wk)↔ p(yk|xk−1) (4)

such that p(xk|xk−1) represents the state transition probabil-
ity and p(yk|xk−1) is the likelihood function that signifies
the probability of the observation of yk, given the current es-
timate of xk.

The filtering procedure targets estimation of xk based upon
all the available measurement sequences y1:k = {yk,k =
1, 2, ....k} . In the context of Bayesian inference, the main ob-
jective is recursive calculation of state distribution, given the
set of observations y1:k up to time tk, with acceptable degree
of belief. This in turn, requires construction of PDF (proba-
bility distribution function) p(xk|y1:k) commonly known as
filtered posterior state PDF that provides all the information
about xk inferred from the measurements y1:k. The initial
state PDF p(x0) is assumed to be known a priori and y0 is
the set of no measurements. Theoretically, the posterior state
can be estimated from the prior p(xk−1|y1 : k−1) at time tk−1

in a recursive way via two sequential steps: prediction and
update.

Prediction step involves application of Chapman-Kolmogorov
equation that leads to the prior state PDF p(xk|y1: k−1) at
time tk:

p(xk|y1 : k−1) =

∫
p(xk|xk−1)p(xk−1|y1 : k−1)dxk−1

(5)
with the assumption that system follows 1st order Makovian
dynamics. The update step involves updating the prior as the
new measurement yk arrives; eventually, leading to the pos-
terior distribution of xk as:

p(xk|y1 : k) =
p(xk|y1 : k−1)p(yk|xk)

p(yk|y1 : k−1)
(6)

The normalizing constant (denominator) is:

p(yk|y1 : k−1) =

∫
p(xk|y1 : k−1)p(yk|xk)dxk (7)

Thus, the latest measurement is incorporated into a priori
state PDF p(xk|y1 : k−1) leading to the posterior state esti-
mate PDF p(xk|y1 : k).

Although the optimal solution is achievable in principle using
the preceding recurrence relations, in practice, due to pres-
ence of non-linear system dynamics and non-Gaussian noises,
the closed form solutions are rarely obtained in closed form.
This is where the Monte Carlo methods become useful and ef-
ficient for estimation and inferences. In particular, Sequential
monte carlo (SMC) methods are extensively used for recur-
sive online estimation. Particle filters is a SMC technique in
which the posterior state PDF is obtained by a set of random
samples or particles where each of the particles has an asso-
ciated weight based upon which the state estimates are com-
puted. In particular, Sequential importance sampling (SIS) is
one of the most popular and basic PFs, also known as Boot-
strap PF, condensation PF or survival of the fittest, in which
posterior state PDF p(x0:k|y1:k) by a set of N number of
weighted particles

{
(xi

0:k),wi
k

}N
i=1

with {xi
0:k, i = 1, ...N}

being the set of particles representing the state value with re-
spective weights as {wi

k, i = 1, ...N}. Moreover, x0 : k =
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{xj , j = 0, ...., k} is the set of all states up to time k. The
weights are the approximations of the relative posterior prob-
abilities of the particles and normalized such that

∑
i

wi
k = 1.

Then, posterior PDF is approximated as

p(x0:k|y1 : k) ≈
N∑
i=1

wi
k.δ(x0:k − xi

0:k) (8)

where δ denotes the Dirac delta function, leading to discrete
weighted approximation to the true posterior state distribu-
tion p(x0:k|y1 : k). As N tends to large numbers, the Monte
Carlo approximation becomes an equivalent representation
to the posterior state PDF. This process of obtaining parti-
cles weights is not a straight-forward procedure for which the
principle of importance sampling is exploited. This involves
a proposal distribution known as importance density, which
is chosen such that p(x) ∝ q(x) and q(x) is a PDF from
which samples can be drawn easily. For example, if a set of
samples xi ∼ q(x), i = 1, . . . , N is generated from the pro-
posal distribution q(x), then the weighted approximation of
the density p(x) is given as :

p(x) ≈
N∑
i=1

wi.δ(x− xi) (9)

with normalized weights as: wi ≈ p(xi)
q(xi) .

This paper does not dwell into the details of importance dis-
tributions and their properties, which are well documented in
the literature available. In SIS PF, the importance density is
set equal to the PDF of system state i.e.

q(x0 : k|x0 : k−1) = p(xk|xk−1) = fk(xk|xk−1) (10)

This enables generation of new particles from the previous set
of particles by simulating the state transition function fk(xk|xk−1).
Additionally, thanks to Markovian dynamics, storage of only
filtered estimate p(xk|y1:k)is required at each step for a se-
quential online implementation. In other words, only xik and
y1:k need to be stored and the previous state path up to xi0:k−1

can be neglected. As a consequence, weights are updated as
wi

k ∝ wi
k−1 · p(yk|xi

k) leading to an approximation of poste-
rior filtered PDF p(xk|y1:k) as

p(xk|y1 : k) ≈
N∑
i=1

wi
k.δ(x0:k − xi

0:k) (11)

This simplified algorithm can be used for recursive estima-
tion of state as the observations arrive sequentially. The like-
lihood functions of the new observations p(yk|xi

k), result in
evaluation of weights of particles constituting the next state
estimate.

3. DIFFERENT PARTICLE FILTER TECHNIQUES

Given the above general principle, the implementation of PF
faces many difficulties and its performance is quite limited in
real applications. To this end, different PF techniques have
been developed to attack specific PF weaknesses and to im-
prove the PF’s performance. In that which follows, we will
explain in more details three major PF problems and their
corresponding solutions.

3.1. Sampling Importance Resampling (SIR)

A usual problem with recursive SIS is that previous steps
lead to an undesirable situation where the importance weights
become increasingly skewed (Arulampalam, Maskell, Gor-
don, & Clapp, 2002). After few iterations, only few particles
tend to have non-negligible weights. This leads to the prob-
lem of particle degeneracy where all but one particle must
be discarded. To avoid this situation, new set of particles
are resampled from the approximate posterior distribution ob-
tained previously in the update stage, constructed upon the
weighted particles. This step is known as resampling step and
is well established in the literature. In general, the particles
are navigated in the region of high likelihood by accepting
high weighted particles and abandoning low weighted par-
ticles. The new particles are again normalized. There are
various techniques developed for efficient resampling, few
of them being multinomial resampling, residual resampling,
systematic resampling methods. A standard SIS when ac-
companied by a resampling step gets referred-to as Sampling-
Importance resampling (SIR). In this paper, systematic re-
sampling scheme which is based upon an ordered technique,
is applied to implement SIR.

3.2. Auxiliary particle filter (APF)

The SIR exhibits two basic weaknesses arising out of em-
pirical approximation of the filtering posterior: poor outlier
performance and poor posterior tail performance. In order
to mitigate the aforementioned issues, auxiliary particle filter
that employs sampling-importance-resampling (APF) is used.
The basic approach of APF remains in mimicking the op-
eration of the minimum variance importance distribution by
introducing an auxiliary variable, K, that represents weight
used for empirical prediction distribution estimate (Pitt & Shep-
hard, 1999; Douc, Moulines, & Olsson, 2009). The main idea
is to perform resampling at time k − 1 using the available
measurement at time k before the particles

{
xi
}N
i=1

are prop-
agated to time k through the transition and likelihood distri-
butions. In this way, particles that are likely to survive (largest
weights) at the next time step k are favored at time step k−1.
The APF is a two-stage process such that: (1) particles with
large predictive likelihoods at time-step (k − 1) are propa-
gated; and (2) the resulting particles are then re-weighted and
drawn from the resulting posterior. Under the assumption that
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the joint posterior at time index k−1 is well approximated by
particle presentation, the joint importance proposal for new
particles is obtained as

q(x0:k) =

past︷ ︸︸ ︷
q(x0:k−1|y0:k) x

new︷ ︸︸ ︷
q(xk|xk−1,yk) (12)

The empirical distribution for p(x0:k−1|y1 : k) is expressed
as:

q(x0:k−1|y1 : k) ≈
N∑
i=1

Ki
k−1 δ(x0:k−1 − xi

0:k−1) (13)

where,
N∑
i=1

Ki
k−1 = 1 and Ki

k−1 > 0. In fact, the ith weight

for each particle is based upon pre-selected particles that are
good fit to the new data. One of the commonly preferred
choice for these weights is to choose a point estimate of the
state as its mean:

m̂i
k =

∫
xk p(xk|xi

k−1)dxk (14)

followed by computation of the weighting function as the
likelihood evaluated at this point as

Ki
k−1 = wi

k−1 p(yk|m̂i
k) (15)

which follows from the marginal p(x0:k−1|y1 : k) which is
a smoothing function. Using this proposal, the generalized
weight

Wauxik =
p(x0:k|y1:k)

q(x0:k)
(16)

can be obtained from the ratio of the posterior to the joint
proposal giving:

Wauxik =
p(x0:k|y1:k)

q(x0:k)
=
wi

k−1

κik−1

x
p(yk|xi

k).p(xi
k|xi

k−1)

q(xi
k|xi

k−1,yk)
(17)

3.3. Regularized particle filter (RPF)

Resampling technique is employed in SIS in order to avoid
particle degeneracy which in turn leads to the formation of
SIR. One of the problems arising due to resampling procedure
is the loss of diversity in the particles sampled. This occurs
mainly because samples are drawn from a discrete rather than
a continuous distribution. If not corrected, we risk a collapse
of all particles to a single location due to sever particle im-
poverishment, leading to a poor representation of the poste-
rior distribution. On of the ways to tackle this is to sample the
posterior p(xk|y1:k) from a continuous rather than a discrete
approximation of the empirical distribution using the kernel
density estimator. This is commonly known as regularization
step such that diversification is achieved by a certain shaking-
up of the particles. Thus, the method is called the regularized

particle lter. In fact, the RPF is similar to SIR except in the
resampling stage which employs a kernel density estimator
(Musso, Oudjane, & Le Gland, 2001; Giremus, Tourneret, &
Djuric, 2005). More specifically, samples are drawn from ap-
proximation:

p(xk|y1 : k) ≈
N∑
i=1

wi
k.K∆x(xk − xi

k) (18)

where,

K∆x =

(
1

∆x

)Nx

K

(
x

∆x

)
is the rescaled kernel; Nx being the state vector dimension;
∆x > 0 being the bandwidth; K(x) is the regularization
kernel which is asymmetric probability density function such
that: K(x) ≥ 0;

∫
K(x) dx = 1;

∫
xK(x) dx = 0; and∥∥x2

∥∥K(x) dx <∞.

The regularization property of the kernel density assures for
any distribution P (x) ∈ RNxx1, the regularization leads to an
absolute continuous probability distribution K∆x(x) ∗ P (x),
with * being the convolution operator such that:

d

dx
[K∆x(x) ∗ P (x)] =

∫
K∆x(x− α)P (α)d(α) (19)

Then, if is an empirical distribution, it can be approximated
as:

P̂ (x) ≈
N∑
i=1

δ(x − xi)

with xi being a sample from the posterior. This leads to the
transformation as:

d

dx
[K∆x(x) ∗ P̂ (x)] =

(
1

∆x

)Nx N∑
i=1

wiK(
x− xi

∆x
) (20)

=

N∑
i=1

wiK∆x(x− xi)

Here, the bandwidth and kernel are selected in such a way
that the mean integrated error between the posterior and reg-
ularized distribution is minimized. Some of the commonly
used kernels (with special assumptions) are: Epanechnikov,
Box, Triangle, Gaussian kernels etc. Now, the approximated
posterior samples are used to obtain the ensemble mean and
covariance at each step by the ensemble approach followed
by factorization of covariance using the Cholesky decompo-
sition. This gives matrix square roots L used in the whitening
transformations and leads to new scaled kernel

K∆x
(x) =

1

|L1/2|(∆x)
Nx
K

(
L1/2x

∆x

)
(21)
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Figure 1. Particle filter based prognostics

The old particles are then shaken-up at each time instant as:

x̃ik = xik + ∆xL
1/2
k .εik

where εik are drawn from the new scaled kernel above.

4. PARTICLE FILTERS FOR PROGNOSTICS IN INDUSTRY:
COMPARISON CRITERIA

4.1. Particle filter based prognostics

Prognostic aims at predicting the future health of industrial
items (components, units, subsystems) and generate their RUL,
which is defined as the estimated time that the items can be
expected to continue to serve their intended function, with
taking into account the knowledge of the item, the historical
and the current monitoring data, and future information re-
lated to mission profile, maintenance plan, etc (Sun, Zeng,
Kang, & Pecht, 2012).

Particle filter based prognostic process can be divided into
five mains steps (See Fig. 1). The process starts by construct-
ing the item health state (x), which can be composed of one
or several representative health indicators such as crack size
of mechanical parts, motor temperature and vibration, bat-
tery state-of-charge, etc. The state transition function xk =
f(xk−1, vk−1) is then constructed based on the knowledge
about the system function/dysfunction and available data. This
step is very critical since the precision of state transition mod-
els has significant impacts on the prognostics performance
(this point will be investigated later in the next section). The
availability of the state transition function is also an important
factor that limits the application of PF techniques in real ap-
plications. That is the reason why PF is usually applied to the
problems such as crack propagation, battery state of charge in
which the state transition function/degradation model is avail-
able.

In the third step, the PF techniques are then applied to esti-
mate the probability distribution of the real state from t = 1
to the current time t = k based on the historical data. It
should be noted that in many cases the state transition func-
tion is designed in the parametric form which contains a set
of unknown parameters. The PF techniques are then used not
only for estimation of the item state, but also the unknown
parameters. The simple solution to do this is to redefine the
augmented state vector as Xk = [xk parak], where parak
is the estimated values of the unknown parameters at time
t = k. A set of initial values of unknown parameters are
then randomly generate at the beginning according to initial

probability distributions of unknown parameters (p0(para)).
The PF techniques are applied to estimate the probability dis-
tributions until time t = k (parak). At the end of this step,
the set of particles representing the distributions of unknown
parameters and industrial item state are obtained.

Based on the obtained particles at time t = k, the prediction is
carried out. It can be done for the next K-steps ahead (K-steps
ahead prediction) or until the instant at which the item state
reaches its critical threshold (to determine the item RUL). In
the prediction step, the particles propagate in the same way
as in the estimation step, except that their weights are not
updated. The weights of the particles are not updated un-
der the assumption that process noise remains same through-
out the long term prediction regime. Let L denote a vector
recorded the instants at which a particle reaches the critical
threshold. The predicted mean value of RUL can be calcu-

lated as RUL = 1
N

N∑
i=1

(Li − k).

4.2. Comparison criteria

Three PF techniques are applied for the RUL prediction of
a case study. Different scenarios are created to compare the
three techniques by setting different accuracy levels of the
state transition function/degradation model and the process
noise level. In addition, the impacts of the length of predic-
tion horizon and the calculation time are also investigated.

These three metrics have been chosen based upon authors
experience . Apart from being intuitive, these metrics also
present a reasonable way of evaluating the pragmatic (im-
plementation) aspects of PF for their industrial utility. As
the PF enabled approach is often model based, accuracy of
the employed degradation model that directly affects the effi-
ciency of the employed PF method, remains of paramount
significance for determining the overall useful/accuracy of
the prognostics. Thus, model accuracy is chosen as a metric
for the comparative study. On the other hand, it is an estab-
lished fact that accompanying noise levels (state and param-
eter) have correlation with state estimation accuracy, hence
affecting the overall prognostic result; thus, making it a suit-
able choice as one of the metrics used in this paper. Finally,
PF has often eluded industrial application mainly owing to its
computational complexity, manifesting in form of computa-
tional time. Thus, computation time is chosen as the third and
final evaluating metric for the comparative study.

Computing time. With the same prediction horizon, the
computing time of the three techniques are also investigated.
Due to additional algorithmic steps involved in APF as well
as RPF as compared against SIR, additional computational
time is expected for the former.

Accuracy of the degradation model. As we mentioned be-
fore, the accuracy of the degradation model is very important
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and has significant impacts on the performance of PF tech-
niques. However, model accuracy does not impact the three
PF methods in exactly the same manner. If the degradation
model is available in parametric form with unknown param-
eters. For SIR and APF techniques, only the weights of un-
known parameters of the degradation model are changed over
time. The initial values remain unchanged due to the fact that
the samples are drawn from discrete distribution. The initial-
ization of parameters values is then very important. Other-
wise, by utilizing RPF, new values of parameters can be dis-
covered over time, since the samples are drawn from contin-
uous distribution. Therefore, from theoretical point of view,
RPF is more suitable for the estimation of unknown param-
eters than the SIR and APF. In this paper, we also investi-
gate the cases in which the degradation model is unknown
completely in advance. Some basic and most often employed
degradation models such as linear, polynomial and exponen-
tial models are then used to test the performance of the three
PF techniques.

Noise level. The second important criterion is the level of
noises. If it is high, then a point estimate such as mean m̂i

k

does not well represent the transition probability p(xk|xi
k−1),

thereby leading to a worse performance of APF technique
when compare to that of SIR or RPF ones. However, in
presence of small noises, the point estimate employed char-
acterizes the transition probability well leading to better ro-
bustness to outliers and a better estimation/prediction perfor-
mance than the SIR and RPF.

5. NUMERICAL EXAMPLES

5.1. Degradation model and simulated data.

Consider a mechanical component subjected to fatigue. The
crack size is chosen as the unique indicator representing the
component’s health state (YANG, YUAN, QIU, ZHANG, &
LING, 2012; Liu, Jia, He, & Sun, 2017). Its transition func-
tion can be developed based on the Paris model (Paris & Er-
dogan, 1963) as following

xk = xk−1 + Ck · (∆σ ·
√
πk−1)mk ·∆N (22)

where, Ck and mk are unknown parameters of the degrada-
tion model; ∆σ = 78 (MPa) is the stress range; and ∆N = 1
is the number of cycles. The initial crack size at time t = 0 is
x0 = 0.01 (m). The component is considered to be failed if
the crack size reaches its threshold which is fixed at xmax =
0.0463 (m).

Given that the crack usually occurs inside the mechanical
component, the direct measure of the crack size is normally
impossible. The indirect inspections are then applied. In
this paper, we consider that the observations follow a lognor-
mal distribution with mean value xk, and standard deviation
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Figure 2. Simulated data from 0 to 1433
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ω = 0.001.

fyk
(x) =

1

x
· 1

p2

√
2π

exp
[
− (lnx− p1)2

2p2
2

]
(23)

where,

p1 = ln
[ xk√

1 +
(

ω
xk

)2 ] and p2 = ln
[
1 +

( ω
xk

)2]
(24)

To compare the three PF techniques, the data are generated
from the above degradation and observation functions. The
unknown parameters of the degradation model (state tran-
sition function) are set as mtrue = 4.0 and ln(Ctrue) =
−22.6204. The simulated data from k = 0 to 1433 is pre-
sented in Fig. 2 Three PF techniques are then applied to es-
timate the unknown parameters and predict the component’s
RUL. The initial values of the unknown parameters are gen-
erated as x0 ∼ N (0.01, 0.0052); m0 ∼ N (4, 0.52); and
C0 ∼ N (−22, 2.002).
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Figure 4. RUL prediction based on SIR at time k = 1146
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Figure 5. Computing time with different numbers of particles

Figures 3 and 4 present the predicted values of the compo-
nent’s crack size and component’s RUL at time t = 1146
(80% component life-cycle). The real value of the compo-
nent’s RUL at the time t is equals to 287. The mean predicted
value of RUL is 293. The error is around 2.1%. The lower
bound and upper bound are respectively 256 and 335.

5.2. Comparison between SIR and APF and RPF

Computing time. In this study, the training (parameters es-
timation) is done from k = 1 to 430 (30% component life-
cycle). The three PF techniques are implemented with dif-
ferent number of particles. Fig. 5 shows that the computing
times of SIR and APF are quite the same and linear. Other-
wise, the computing time of RPF is very high when compared
to that of SIR and APF. Indeed, the computing times of SIR
and APF are only 2.29 and 2.47 seconds when the number of
particles is 5000, otherwise RPF takes around 46.75 seconds
for only 100 particles. In addition, the computing time of RPF
is growing exponentially over the number of particles. With
a high computing time, the RPF faces many challenges in the
applications where the computing resources are limited or the
online updating is required, e.g., cyberphysical systems.

Figure 6. RUL histogram with the exponential model

Table 1. Predicted RUL by using the exponential model

PF techniques Mean predicted RUL Error (%)
ISR 2062 105.58%
APF 1640 63.51%
RPF 1137 13.35%

Accuracy of the degradation model. In this study, we con-
sider that the state transition function is not available. To pre-
dict the component’s RUL, approximate models containing
linear, polynomial and exponential models, are constructed
from the given data by using of different regression methods.
Finally, exponential model is selected since it fits the crack
data in the best manner with least regression error. The set-
ting of the exponential model as following

xk = xk−1 + a · eb·k ·
[
(1− 1

eb
)
]

(25)

where, a ∼ U(0.0096, 0.0100) and b ∼ U(0.00059, 0.00073).

The three PF techniques are then applied to predict the com-
ponent’s RUL at time t = 430. The obtained results are
shown in Figure 6 and Table 1. From the obtained results,
we can observe that the performance of PF techniques is de-
creased significantly as the degradation model is not an exact
one. In addition, RPF is the best among the three techniques
since it is suitable for the problems where the parameters are
unknown. This in turn is largely due to the fact that consti-
tuting particles are “jittered” or shaken up at each step which
enables them to estimate the true values. It also should be
noted that given the stable performance, the RPF takes a lot
of computing resources.

Process noise level. In this study, the noise level in the ob-
servation function is increased by setting ω = 0.01. Other-
wise, the true degradation model is used instead of the expo-
nential one. The three PF techniques are then applied to pre-
dict the component’s RUL. The obtained results are reported

7
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Table 2. Predicted RUL vs a high level of the measure noise

PF techniques Mean predicted RUL Error (%)
ISR 916 8.67%
APF 1434 42.97%
RPF 1047 4.38%

in Table 2. The table shown that, if the observation and state
transition functions are well defined, the noise level has only
slight impacts on the performance of SIR and RPF. In addi-
tion, by resampling from the continuous distribution instead
of the discrete one, the performance of RPF is always better
than that of SIR as resampling from continuous distributions
leads to a ’smooth’ and hence better approximation of poste-
rior distribution. Moreover, the performance of APF is weak
in the case of high noise level. It is also worse than that of
SIR.

6. CONCLUSIONS

In this study, we focus on the comparisons of three PF tech-
niques (SIR, APF, RPF) for RUL prediction (prognostic) of
industrial components/systems. The comparisons are done
by considering different criteria consisting of computational
time, degradation model accuracy and the noise level. The
obtained results shown that the RPF is the most powerful
technique. However, the application of RPF faces challenges
related to the computing resources and the online updating. It
is then reasonable to use the RPF in the cases where the on-
line updating is not necessary or the computing resources are
available. The performance of SIR and APF are worse than
that of RPF. However, they do not require a lot of computing
time, and therefore can be applied in cases of the online up-
dating or the limited computing resources. Finally, it should
be noted that the performance of APF is very sensitive to the
noise level, and the APF is then recommended for the cases
where the noise level is small. To complete the study, in the
future work, more comparison criteria and real industrial ap-
plications will be considered.
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