Experimental Validation of Multi-fidelity Models for Prognostics of Electromechanical Actuators
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The growing adoption of electrical energy as a secondary form of onboard power leads to an increase of electromechanical actuators (EMAs) use in aerospace applications. Therefore, innovative prognostic and diagnostic methodologies are becoming a fundamental tool to early identify faults propagation, prevent performance degradation, and ensure an acceptable level of safety and reliability of the system. Furthermore, prognostics entails further advantages, including a better ability to plan the maintenance of the various equipment, manage the warehouse and maintenance personnel, and a reduction in system management costs.
Frequently, such approaches require the development of typologies of numerical models capable of simulating the performance of the EMA with different levels of fidelity: monitoring models, suitably simplified to combine speed and accuracy with reduced computational costs, and high fidelity models (and high computational intensity), to generate databases, develop predictive algorithms and train machine learning surrogates. Because of this, the authors developed a high-fidelity multi-domain numerical model (HF) capable of accounting for a variety of physical phenomena and gradual failures in the EMA, as well as a low-fidelity counterpart (LF). This simplified model is derived by the HF and intended for monitoring applications. While maintaining a low computing cost, LF is fault sensitive and can simulate the system position, speed, and equivalent phase currents.
These models have been validated using a dedicated EMA test bench, designed and implemented by authors. The HF model can simulate the operation of the actuator in nominal conditions as well as in the presence of incipient mechanical faults, such as a variation in friction and an increase of backlash in the reduction gearbox.
Comparing the preliminary results highlights satisfactory consistency between the experimental test bench and the two numerical models proposed by the authors.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics, Electromechanical actuators, monitoring models, high-fidelity multi-domain numerical model, Experimental Validation
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.