Process-Monitoring-for- Quality — A Model Selection Criterion for Shallow Neural Networks
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Since most manufacturing systems generate only a few
defects per million of opportunities, rare quality event
detection is one of the main applications of process monitoring
for quality. Single-hidden-layer feed-forward
neural networks have been successfully applied to perform
this task. However, since the best network structure
is not known in advance, many models need to be learned
and tested to select a final model with the right number
of hidden neurons. A new three-dimension 3D
How to Cite
##plugins.themes.bootstrap3.article.details##
Model selection criterion,, Artificial neural networks, Single hidden layer, Binary classification, Highly unbalanced data structures
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.