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ABSTRACT

Since most manufacturing systems generate only a few de-
fects per million of opportunities, rare quality event detection
is one of the main applications of the Process Monitoring for
Quality philosophy. Single-hidden-layer feed-forward neural
networks have been successfully applied to perform this task.
However, since the best network structure is not known in ad-
vance, many models need to be learned and tested to select
a final model with the right number of hidden neurons. A
new three-dimensional model selection criterion (3D−NN )
is introduced for the application of shallow neural networks
to highly/ultra unbalanced binary data structures. Proposed
criterion combines three of the most important attributes –
prediction, fit, complexity – of a network structure and map
them into a three dimensional space to select the best one. It
is simple, intuitive and more stable than widely used criteria –
Akaike information criterion, Bayesian information criterion
and validation cross-entropy error – when dealing with these
data structures.

1. INTRODUCTION

Process Monitoring for Quality (PMQ) is a big data-driven
quality philosophy aimed at defect detection through binary
classification (Abell et al., 2017). It is founded on Big Models
(BM), a modeling paradigm based on optimization, machine
learning and statistics, Fig. 1. It includes a learning compo-
nent that requires many models to be created to find the final
model (classifier) (Escobar, Abell, Hernández-de Menéndez,
& Morales-Menendez, 2018). Since many Candidates Mod-
els (CM) are created, Model Selection (MS) is one of the main
challenges. The concept of using three attributes to evaluate
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the fitness of a CM was initially introduced in (Escobar, Weg-
ner, Gaur, & Morales-Menendez, 2019) for genetic program-
ming, extended to the support vector machine (Escobar &
Morales-Menendez, 2019b) and logistic regression (Escobar
& Morales-Menendez, 2019a). However, these criteria can-
not be directly applied to the Artificial Neural Network (ANN)
algorithm.
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Figure 1. Big Data – Big Models

Feed-Forward Neural Network(s) (FFNN) are universal ap-
proximators (Hornik, Stinchcombe, & White, 1989). Their
widespread popularity in many domains is mainly due to their
ability to approximate complex nonlinear patterns directly
from the input samples, without assuming any parametric
form for distinguishing between classes. In manufacturing,
shallow ANN have been successfully applied for rare quality
event detection (Escobar et al., 2018), as depicted in Fig 3.
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In designing a functional ANN structure, determining the
number of hidden neurons (Hn) is one of the most important
challenges because there is no analytical method to define the
optimal structure in advance. In the context of generaliza-
tion (prediction on unseen data), if the ANN is too large (too
small), it could potentially overfit (underfit) the data. In either
of these cases, the network would not generalize well. Exist-
ing methods (Sheela & Deepa, 2013) to determine Hn are
heuristic in nature and/or trial-and-error dependent – training
and estimating the generalization capacity. Since many ANN
structures – different numbers ofHn – need to be learned and
tested to find the best one (final model), MS is one of the most
important steps in the development of a functional structure.

In today’s high conformance manufacturing environment,
data sets for binary classification of quality (good,bad) tend
to be highly/ultra (bad class count< 1%) unbalanced. There-
fore, detecting these few Defects Per Million of Opportunities
(DPMO) is one of the main challenges addressed by PMQ.
Therefore, in manufacturing modeling, functional refers to a
parsimonious (Burnham & Anderson, 2003) classifier with
high detection ability.

A new Three Dimensional (3D) MS criterion (3D − NN )
for single-hidden-layer FFNN is presented. It is based on
three of the most relevant attributes of an ANN structure: (1)
prediction (generalization), (2) fit (robustness of predictions),
and (3) complexity (Hn). Criterion enables the development
of a structure with high defect detection ability while avoiding
overcomplexity; extra neurons with negligible contribution to
the first two attributes.

The rest of the paper is organized as follows. Acronyms in Ta-
ble 1, a brief theoretical background is in section 2. Section 3
describes the MS criterion. To evaluate the performance of
the criterion, a comparative analysis using many public data
sets is presented in section 4. Section 5 shows the conclusions
and future research.

2. ARTIFICIAL NEURAL NETWORKS

Although ANN approach can be applied for different pur-
poses: function approximation, probability estimation, pat-
tern recognition, clustering, and prediction (Demuth, Beale,
De Jess, & Hagan, 2014), the type of Neural Network (NN)
for which the 3D − NN MS is developed is very specific,
and widely used in manufacturing. In this section, a brief
overview of the ANN architecture of interest is provided.

2.1. Single Hidden Layer Feed-Forward

The FFNN was the first and simplest type of ANN devel-
oped. It has been successfully applied to solve a wide range
of complex-classification problems across domains (Escobar
et al., 2018; Boland & Murphy, 2001; Saxena & Saad, 2007).
In this network, the information moves in just one direction,

forward. There are no cycles or loops from the outputs of
the neurons towards the inputs throughout the network (Sazli,
2006; Auer, Burgsteiner, & Maass, 2008). To explain in brief,
the information enters the network through the input neurons
of the first layer, which then develop a mathematical pro-
cess (F. Amato nd A. López, na Méndez, Vaǎhara, Hampl,
& Havel, 2013) by using activation functions (Valente Klaine,
Ali Imran, Onireti, & Demo Souza, 2017) and finally is trans-
ferred to the neurons of the following layer. Each neuron is
connected to each neuron of the forward layer by a weighted
relation, which indicates the strength of the link. Finally, the
neurons of the last layer provide the outcome.

Figure 2 shows the ANN structure of interest, which is suit-
able for binary classification problems. A single hidden layer
FFNN with sigmoid transfer and activation functions, the
classification threshold, γ, is tuned with respect to the Maxi-
mum Probability of Correct Decision (MPCD) following the
OCTM algorithm (Escobar & Morales-Menendez, 2017). For
the purposes of this paper, a network with only a single hid-
den layer is called shallow.

The process of assigning the predicted label (ŷ) to a manufac-
tured item is defined as follows:

ŷi =

{
1 if O(y = 1|x; θ) ≥ γ ⇒ ith predicted bad (+)
0 if O(y = 1|x; θ) < γ ⇒ ith predicted good (–).

(1)

Since the number of hidden layers is constant and the trans-
fer/activation functions are the same, complexity (Kon &
Plaskota, 2006) can be efficiently defined in function of num-
ber of parameters (Np).

Np = (m× n) + (n× 1) (2)

2.2. Maximum Probability of Correct Decision

In the field of machine learning, specifically applied to clas-
sification problems, a confusion matrix (Fawcett, 2006) is a
technique for summarizing the performance of a classifier. It
is a table with two rows and two columns that contrasts pre-
dictions with real-world values Table 2.

Table 2. Confusion matrix.

Predicted good Predicted bad
Real-world good True Negative (TN) False Positive (FP)
Real-world bad False Negative (FN) True Positive (TP)

A type-I error (α) may be compared with a FP prediction; a
type-II (β) error may be compared with a false FN (Devore,
2015):

α =
FP

FP + TN
, β =

FN
FN + TP

(3)

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Table 1. Acronyms Definition

Acronyms Definition
ANN Artificial Neural Network
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
BM Big Models
CEE Cross-Entropy Error
CM Candidate Model
DPMO Defect Per Million of Opportunities
FFNN Feed-Forward Neural Network(s)
LSW Laser Spot Welding
MPCD Maximum Probability of Correct Decision
MS Model Selection
NN Neural Network(s)
OCTM Optimal Classification Threshold with respect to MPCD
3D Three Dimension
UMW Ultrasonic Metal Welding
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Figure 2. Single-hidden-layer FFNN (fully connected) structure with sigmoid transfer function and sigmoid activation function.

The MPCD is a probabilistic-based measure of classification
performance – driven by detection – that is highly sensitive
to FN in highly/ultra unbalanced classes. The α, and beta β
errors are combined to estimate its score:

MPCD = (1− α)(1− β) (4)

where higher score (0 ≤MPCD≤ 1) indicates better classi-
fication performance.

Figure 3 shows how BM is applied to process data to monitor
and detect those very few DPMO that are generated by the
manufacturing process. Where the predominant goal for a
classifier is detection (β = 0) with a small as possible false
alarm rate – FP (α).

2.3. Cross-Entropy Error

The probability distribution of the class label y, given a fea-
ture vector x is modeled by (S. Lee, Lee, Abbeel, & Ng,

2006):

O(y = 1|x; θ) = σ(θTx) =
1

1 + exp(−θTx)
(5)

where θ ∈ RN are the parameters of the model and σ(·)
is the sigmoid function that maps values from (−∞,∞) to
[0, 1]. The Cross-Entropy Error (CEE) of the NN is defined
by (Murphy, 2012):

M∑
i=1

[y(i)logO(i) + (1− y(i))log(1−O(i))] (6)

3. THE CRITERION

A 3D MS criterion (3D−NN ) is presented which is aimed at
analyzing highly/ultra unbalanced data structures. Due to the
importance of detecting rare quality events generated by man-
ufacturing systems, proposed criterion is mainly driven by de-
tection ability. It uses three of the most important attributes
of an ANN structure – prediction (rewarding attribute), fit (re-
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Figure 3. PMQ-based quality control.

warding attribute), complexity (penalizing attribute) – of each
CM to map them into a three dimensional space to select
the best one. Criterion avoids overcomplexity; extra neurons
with negligible contribution to the rewarding attributes.

Once a set of Candidate Models, (CMm
j ), j = 1, ...,m,

– where m is the number of models – are trained by ex-
ploring different numbers of Hn, the three attribute values
are computed. To match the MPCD scale, fit and com-
plexity attributes are rescaled to [0, 1] using the Min −
Max (Mohamad & Usman, 2013) normalization method.

1. Prediction (p)
A rewarding attribute based on validation MPCD. In
highly unbalanced data structures, this measure of classi-
fication performance tends to reflect the model’s capacity
in detecting the minority class.

pj = 1−MPCDj (7)

2. Fit (f )
A rewarding attribute based on the validation CEE. It is
a relative measure that describes how well a candidate
model fits the validation data, where smaller values de-
scribe more robust predictions.

fj = CEEj (8)

MM(fj) =
fj −min(f)

max(f)−min(f)
(9)

3. Complexity (c)
A penalizing attribute based on Np.

cj = Npj (10)

MM(cj) =
cj −min(c)

max(c)−min(c)
. (11)

For each CMj the tree associated attribute values are mapped

into a three-dimensional space and the weighted Euclidean
(Ewj) distance (Deza & Deza, 2009) to the utopian point
(0, 0, 0) is computed, eqn 12. Then, the closest model (3D−
NN∗) to the utopian point is selected, Eq. 13. The utopian
point, is an ideal model that optimizes the three attribute-
functions simultaneously; however, most of the times, a
model cannot be improved in any of the attributes without
degrading at least one of the others. An overview of the MS
process is illustrated in Fig. 4.

Ewj =
√
wp(pj − 0)2 + wf (fj − 0)2 + wc(cj − 0)2 (12)

where wp = 1, wf = 1 and wc = 0.01

3D −NN∗ = min(Ewj)
m
j . (13)

3.1. Discussion

The fundamental principle of BM learning paradigm, is that
none of the models developed using process (empirical) data
is the true model that generates the observed data. Based on
this premise, proposed criterion’s objective is not to search
for the true model, but to efficiently solve the posed tradeoff
between these three competing attributes.

There is no universal best Euclidean weight-combination, in-
stead they are hyper-parameters that can be adjusted based on
the goals of a particular project. Since complexity increases
very rapidly, its influence is kept low, otherwise it would be-
come a dominating attribute. Proposed weights maintain pre-
diction (wp = 1) and fit (wf = 1) as the main drivers. How-
ever, the light penalization for complexity (wc = 0.01) pre-
vents the selection of over-complex structures.

3.2. The MS Process

To illustrate the MS process, a case study is derived from Ul-
trasonic Metal Welding (UMW) (Shao et al., 2013) of bat-
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tery tabs for the Chevrolet Volt (Abell et al., 2017), an ex-
tended range electric vehicle. A very stable process, that
only generates a few defective welds per million of oppor-
tunities. The data set has 54 features and a binary outcome
(good/bad). It is highly unbalanced, since it contains only
29 bad batteries out of 30,731 examples (0.0944%). Because
manufacturing systems tend to be time-dependent, the data
set is partitioned following the time-ordered hold-out valida-
tion scheme (Escobar et al., 2018): training set (18,495 - in-
cluding 20 bads), validation set (12,236 - 9 bads). Following
a widely used rule-of-thumb “the number of hidden neurons
should be less than twice the size of the input layer” (Heaton,
2008), 108 candidate models,CMj , are generated using early
stopping (Demuth et al., 2014) with the scaled conjugate gra-
dient algorithm (Møller, 1993).

Candidate model information is summarized in Fig. 5, and the
MS process is illustrated in Fig. 6. First, the three attributes
of each CMj are mapped into a three dimensional space,
Fig. 6(a), then, the weighted Euclidean distance of each CMj

is computed, and the one closest to the utopian point is se-
lected, Fig. 6(b). According to the MS criterion, CM7 should
be selected (Ew7 = 0.0258) – Hn = 7, MPCD = 0.97677
and CEE = 64.4580. This model has the highest prediction,
relatively low CEE (good fit) and low complexity.

4. COMPARATIVE ANALYSIS

To verify the performance of proposed criterion, the final
model selected by 3D − NN is compared against the final
model selected by three criteria/method, which have been
widely used to search for the most efficient NN structure:
(1) Akaike information criterion (AIC) (Panchal, Ganatra,
Kosta, & Panchal, 2010), (2) Bayesian information criterion
(BIC) (H. K. Lee, 2001), (3) validation CEE (Demuth et
al., 2014), and (4) validation MPCD (Escobar & Morales-
Menendez, 2017). To perform this analysis, 10 highly/ultra
unbalanced data sets (8 publicly available) are used, Table 3.
The associated attribute values of each final model by data set
are summarized in Table 4.

3D −NN vs:

• AIC, the final models selected by the 3D − NN crite-

rion show significantly better generalization ability and
fitting properties. This gain is obtained at the expense of
a slightly higher complexity than the structures selected
by AIC.

• BIC, the 3D − NN criterion show significantly better
generalization ability and fitting properties. This gain is
obtained at the expense of a slightly higher complexity.

• Validation CEE and MPCD, the 3D−NN criterion show
competitive generalization ability. However, both ap-
proaches show competitive generalization at the expense
of overcomplexity.

Proposed criterion shows competitive performance at solv-
ing the posed tradeoff between the three competing attributes.
The AIC, BIC and validation CEE raise a red flag when
dealing with highly/ultra unbalanced data structures, as they
selected myope structures – a solution that fails to capture
the pattern (e.g., MPCD = 0.3078, MPCD = 0.3338,
MPCD = 0.4000 respectively).

Whereas measures of classification performance (e.g.,
MPCD) can be used as a MS criterion, there is a risk as-
sociated – as shown in by data set 8 – since the final model
may be an overcomplex NN structure with virtually the same
prediction ability of a simpler one – e.g., MPCD = 0.8621
with Np = 30 Vs MPCD = 0.8678 with Np = 1650.

5. CONCLUSIONS

A new model selection criterion for a single-hidden-layer
FFNN structures was developed. It maps three of the most
important attributes of an ANN structure – prediction, fit,
complexity – into a three dimensional space and uses the
weighted Euclidean distance to the utopian point – where the
three attributes are optimized simultaneously.

Based on empirical results, proposed criterion shows bet-
ter performance and stability at solving the posed tradeoff
between these three competing attribute than conventional
model selection criteria when dealing with highly/ultra un-
balanced data structures. As it selected structures with high
detection ability, avoided overcomplexity and never selected
a myope solution.
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Table 3. Data sets information (preprocessing details are provided in Appendix A).

Data Description Features Instances Negative class Overall
set (T/V) (T/V) %
1 UMW 54 18,495/12,236 20/9 0.09††
2 LSW 240 1,502/760 32/15 2.07†
3 AID373* 155 47,831/11,957 50/12 0.10††
4 AID604AID644* 154 47,826/11,956 54/13 0.11††
5 AID746AID1284* 154 47,828/11,956 46/11 0.09††
6 Statlog (class 1) 36 4,435/2,000 1,072/461 23.82†
7 Statlog (class 2) 36 4,435/2,000 479/224 10.92†
8 Credit Card Fraud 29 200,000/84,807 385/107 0.17††
9 Occupancy Detection 5 6,587/1,791 173/98 3.23†

10 HTRU2 8 12,000/5,898 1,484/155 9.15†
T=Training set V=Validation set *Subsets of PubChem Bioassay Data

†highly unbalanced ††ultra unbalanced

Table 4. Characteristics of the selected model based on 3D −NN , AIC, BIC and validation CEE

Data 3D-NN AIC BIC CEE MPCD
Set p f c p f c p f c p f c p f c
1 0.9767 64.45 385 0.7659 65.49 55 0.7659 65.49 55 0.7703 50.36 2200 0.9767 64.45 385
2 0.8782 46.05 10485 0.6559 60.41 1687 0.7166 30.74 241 0.4000 20.89 90134 0.8782 46.05 10485
3 0.7667 223.29 27144 0.4784 247.42 47892 0.3338 341.64 156 0.5487 236.91 6240 0.7692 214.68 29328
4 0.7835 336.86 4650 0.3078 420.43 155 0.3078 420.43 155 0.7137 316.57 35650 0.7835 336.86 4650
5 0.8890 213.94 4650 0.6283 329.31 155 0.6283 329.31 155 0.8374 144.88 3100 0.9213 214.68 21700
6 0.9863 48.67 518 0.9694 167.41 37 0.9694 167.41 37 0.9902 36.46 2294 0.9941 67.97 2331
7 0.9755 56.57 185 0.9605 132.13 37 0.9605 132.13 37 0.9821 33.54 777 0.9821 33.54 777
8 0.8621 662.8 30 0.8621 662.8 30 0.8621 662.8 30 0.8621 659.81 1470 0.8678 653.61 1650
9 0.9582 185.03 12 0.9675 190.46 6 0.9675 190.46 6 0.9675 185.33 42 0.9681 196.62 36

10 0.8891 1118.1 18 0.8891 1118.1 18 0.8891 1118.1 18 0.9028 1110 45 0.9028 1110 45

Future research along this path could be the application of the
3D −NN criterion to deep neural network structures, since
the Np tend to explode, defining its influence on the criterion
seems an interesting research challenge.
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APPENDIX

• Data set 1-2
UMW and LSW data sets are privately stored in the Man-
ufacturing Research Lab of General Motors. Because of
the active research aimed at understanding and improv-
ing these processes, General Motors can not make these
data sets publicly available.

• Data set 3-5
Data sets derived from the PubChem Bioassay data
set (Dheeru & Karra Taniskidou, 2017). These highly

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

imbalanced bioassay data sets are from the differing
types of screening that can be performed using HTS tech-
nology. These data sets were created from 12 bioassays.

• Data set 6-7
Data sets derived from the Statlog (Landsat Satellite)
data set (Dheeru & Karra Taniskidou, 2017). The orig-
inal data set contains seven classes (with no instances
with class 6). In this study, only classes 1 and 2 are con-
sidered – class 1 vs. all, class 2 vs. all.

• Data set 8
Credit Card Fraud data set (//github.com/ellisvalentiner
/credit-card-fraud), it contains credit card transactions
over a two day collection period in September 2013 by
European cardholders. There are a total of 284,807 trans-
actions, of which 492 (0.172%) are fraudulent. First
200,000 are used for training and the last 84,807 for val-
idation.

• Data set 9

Occupancy Detection data set (Candanedo & Feldheim,
2016; Dheeru & Karra Taniskidou, 2017). To create an
unbalanced data structure, one out of 10 class 1 are in-
cluded in the data sets (index 1, 10, 20, etc.) and the
remaining nine eliminated, all 0 class are included.

• Data set 10

HTRU2 data set (Lyon, Stappers, Cooper, Brooke, &
Knowles, 2016; Dheeru & Karra Taniskidou, 2017). Pul-
sar candidates collected during the HTRU survey. Pul-
sars are a type of star, of considerable scientific interest.
Candidates must be classified in to pulsar and non-pulsar
classes to aid discovery. First 12,000 are used for train-

ing and the last 5,898 for validation.
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