Remaining useful life estimation of turbofan engines using adaptive fault detection learning
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Failure prognostics have greatly enhanced the predictive maintenance of industrial systems by providing the remaining useful life (RUL) information, offering opportunities for high reliability, availability, maintainability and safety. To do so, historical monitoring data are injected into machine learning model to learn how to predict the RUL and then, in an online phase directly estimate the RUL of a new similar system. However, in case of multiple degradation trends representing multiple systems, it lead to different times of anomaly appearance and therefore various RUL values for learning. This situation makes difficult to train the predictor and use in this case an approximated unique RUL value. Hence, this paper proposes an adaptive anomaly detection methodology to identify the times of fault occurrence, and then assign the correct RUL values of each failure trajectory to the train the predictor. This methodology will facilitate the learning task for an accurate prediction of system RUL. The performance of the proposed methodology is highlighted using a long short-term memory (LSTM) network with the accelerated run to failure data of turbofan engines provided by the NASA to estimate the RUL.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics, Condition monitoring, Data processing, Health indicator, Fault detection, Long-Short Term Memory, Remaining useful life, Turbofan engines.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.