Data-Driven Prognostics of Lithium-Ion Rechargeable Battery using Bilinear Kernel Regression
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Reliability of lithium-ion (Li-ion) rechargeable batteries has been recognized as of high importance from a broad range of stakeholders, including battery manufacturers, manufacturers of battery-powered devices, regulatory agencies, researchers, and the public. Assessing the current and future health of Li-ion batteries is essential to ensure the batteries operate safely and reliably throughout their lifetime. This paper presents a new data-driven approach for prediction of battery remaining useful life (RUL) in the presence of corruptions (or errors) in capacity features. The approach leverages bilinear kernel regression to build a nonlinear mapping between the capacity feature space and the RUL state space. Specific innovations of the approach include: i) a general framework for robust sparse prognostics that effectively incorporates sparsity into kernel regression and implicitly compensates for errors in capacity features; and ii) two numerical procedures for error estimation that efficiently derives optimal values of the regression model parameters. Results of 10 years’ continuous cycling test on Li-ion prismatic cells suggest that the proposed approach achieves robust RUL prediction despite random noise in the capacity features.
How to Cite
##plugins.themes.bootstrap3.article.details##
prognostics, Remaining useful Life, Lithium-ion battery, Bilinear Kernel Regression
Chen, Y., Caramanis, C., & Mannor, S. (2013). Robust Sparse Regression under Adversarial Corruption. In ICML (3) (pp. 774-782).
Coble, J. B., & Hines, J. W. (2008, October). Prognostic algorithm categorization with PHM challenge application. In Prognostics and Health Management, 2008. PHM 2008. International Conference on (pp. 1-11). IEEE.
Dickerson, A., Rajamani, R., Boost, M., & Jackson, J. (2015). Determining Remaining Useful Life for Li-ion Batteries (No. 2015-01-2584). SAE Technical Paper.
Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005). Residual-life distributions from component degradation signals: A Bayesian approach. IiE Transactions, 37(6), 543-557.
Gebraeel, N., & Pan, J. (2008). Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. IEEE Transactions on Reliability, 57(4), 539-550.
Goebel, K., Eklund, N., & Bonanni, P. (2006, March). Fusing competing prediction algorithms for prognostics. In 2006 IEEE Aerospace Conference(pp. 10-pp). IEEE.
He, W., Williard, N., Chen, C., & Pecht, M. (2013). State of charge estimation for electric vehicle batteries using unscented Kalman filtering.Microelectronics Reliability, 53(6), 840-847.
Heimes, F. O. (2008, October). Recurrent neural networks for remaining useful life estimation. In Prognostics and Health Management, 2008. PHM 2008. International Conference on (pp. 1-6). IEEE.
Herman, M. A., & Strohmer, T. (2010). General deviants: An analysis of perturbations in compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2), 342-349.
Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics-theory and Methods,6(9), 813-827.
Hu, C., Youn, B. D., & Chung, J. (2012). A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation.Applied Energy, 92, 694-704.
Hu, C., Youn, B. D., Wang, P., & Yoon, J. T. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering & System Safety, 103, 120-135.
Hu, C., Jain, G., Schmidt, C., Strief, C., & Sullivan, M. (2015). Online estimation of lithium-ion battery capacity using sparse Bayesian learning. Journal of Power Sources, 289, 105-113.
Hu, C., Jain, G., Tamirisa, P., & Gorka, T. (2014). Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Applied Energy, 126, 182-189.
Hu, X., Jiang, J., Cao, D., & Egardt, B. (2016). Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Transactions on Industrial Electronics, 63(4), 2645-2656.
Lee, S., Kim, J., Lee, J., & Cho, B. H. (2008). State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. Journal of power sources, 185(2), 1367-1373.
Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010). An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MOFFETT FIELD CA AMES RESEARCH CENTER.
Liu, J., Wang, W., Ma, F., Yang, Y. B., & Yang, C. S. (2012). A data-model-fusion prognostic framework for dynamic system state forecasting.Engineering Applications of Artificial Intelligence, 25(4), 814-823.
Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of power sources, 226, 272-288.
Luo, J., Pattipati, K. R., Qiao, L., & Chigusa, S. (2008). Model-based prognostic techniques applied to a suspension system. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(5), 1156-1168.
Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. Journal of power sources, 134(2), 262-276.
Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources, 134(2), 277-292.
Roth, V. (2001, August). Sparse kernel regressors. In International Conference on Artificial Neural Networks (pp. 339-346). Springer Berlin Heidelberg.
Saha, B., & Goebel, K. (2009). Modeling Li-ion battery capacity depletion in a particle filtering framework. In Proceedings of the annual conference of the prognostics and health management society (pp. 2909-2924).
Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 58(2), 291-296.
Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation–A review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1-14.
Si, X. S., Wang, W., Hu, C. H., Chen, M. Y., & Zhou, D. H. (2013). A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mechanical Systems and Signal Processing,35(1), 219-237.
Tikhonov, A. N., & Arsenin, V. Y. (1977). Methods for solving ill-posed problems. John Wiley and Sons, Inc.
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research, 1(Jun), 211-244.
Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra (Vol. 50). Siam.
Van Den Berg, E., & Friedlander, M. P. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2), 890-912.
Wang, D., Miao, Q., & Pecht, M. (2013). Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. Journal of Power Sources, 239, 253-264.
Wang, P., Youn, B. D., & Hu, C. (2012). A generic probabilistic framework for structural health prognostics and uncertainty management. Mechanical Systems and Signal Processing, 28, 622-637.
Wang, T., Yu, J., Siegel, D., & Lee, J. (2008, October). A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In Prognostics and Health Management, 2008. PHM 2008. International Conference on (pp. 1-6). IEEE.
Xiong, R., Sun, F., Chen, Z., & He, H. (2014). A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles. Applied Energy, 113, 463-476.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.