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ABSTRACT  

Reliability of lithium-ion (Li-ion) rechargeable batteries has 

been recognized as of high importance from a broad range of 

stakeholders, including battery manufacturers, manufacturers 

of battery-powered devices, regulatory agencies, researchers, 

and the public. Assessing the current and future health of Li-

ion batteries is essential to ensure the batteries operate safely 

and reliably throughout their lifetime. This paper presents a 

new data-driven approach for prediction of battery remaining 

useful life (RUL) in the presence of corruptions (or errors) in 

capacity features. The approach leverages bilinear kernel 

regression to build a nonlinear mapping between the capacity 

feature space and the RUL state space. Specific innovations 

of the approach include: i) a general framework for robust 

sparse prognostics that effectively incorporates sparsity into 

kernel regression and implicitly compensates for errors in 

capacity features; and ii) two numerical procedures for error 

estimation that efficiently derives optimal values of the 

regression model parameters. Results of 10 years’ continuous 

cycling test on Li-ion prismatic cells suggest that the 

proposed approach achieves robust RUL prediction despite 

random noise in the capacity features.  

Keywords: Bilinear Kernel Regression; Prognostics; 

Remaining Useful Life; Lithium-Ion Battery 

1. INTRODUCTION 

Lithium-ion (Li-ion) battery technology has been playing a 

critical role in realizing wide-scale adoption of hybrid and 

electric vehicles and show great promise for emerging 

applications in smart grid and medical devices. Over the past 

two decades, real-time health diagnostic and prognostic 

techniques have been developed and deployed in battery 

management systems (BMSs) to monitor the health condition 

of a battery in operation (Plett, 2004, 2004; He et al., 2013; 

Lee et al., 2008; Hu, Youn & Chung, 2012; Xiong et al., 

2014; Hu et al., 2015); and to infer, within a maintenance 

horizon time, the remaining useful life (RUL), i.e., when the 

battery is likely to fail (Saha & Goebel, 2009; Saha, Goebel, 

Poll, et al., 2009; Liu et al., 2010; Wang et al., 2013; 

Dickerson et al., 2015; Hu et al., 2014; Hu et al. 2016). Based 

on the voltage, current and temperature measurements 

acquired from the battery, these techniques estimate three 

performance indicators of the battery: state of charge (SOC), 

state of health (SOH) and state of life (SOL). Accurate 

estimation of these parameters provides greater transparency 

into the current and future health of the battery, more cost-

effective maintenance strategies and minimum downtime, 

and opportunities for battery life extensions.  

Research on life prognostics of a general engineered system 

was conducted with an emphasis on predicting the RUL 

distribution. In general, three categories of approaches have 

been developed that enable continuous updating of system 

health degradation and RUL distribution: (i) model-based 

approaches (Gebraeel et al., 2005; Luo et al., 2008; Gebraeel 

& Pan, 2008; Si et al., 2013), (ii) data-driven approaches (Si 

et al., 2011; Wang et al., 2008; Wang et al., 2012; Hu, Youn, 

Wang, et al., 2012; Coble and Hines, 2008; Heimes, 2008; Lu 

et al., 2013), and (iii) hybrid approaches (Goebel et al., 2006; 

Liu et al., 2012). With the advance of modern sensor systems 

as well as data storage and processing technologies, the data-

driven approaches, which mainly rely on large volumes of 

sensory data with no stringent requirement on the knowledge 

about the underlying degradation mechanisms of the system, 

have recently become popular. A good review of data-driven 

prognostic approaches was given in (Si et al., 2011). Data-

driven prognostic approaches generally require sensory data 
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fusion and feature extraction, pattern recognition, and for life 

prediction, interpolation (Wang et al., 2008; Wang et al., 

2012; Hu, Youn, Wang, et al., 2012), extrapolation (Coble & 

Hines, 2012), machine learning (Heimes, 2008), and so on.  

Research on life prognostics of Li-ion battery (or battery 

prognostics) was mainly conducted by researchers in the 

prognostics and health management (PHM) society (Saha & 

Goebel, 2009; Saha, Goebel, Poll, et al., 2009; Liu et al., 

2010; Wang et al., 2013; Dickerson et al., 2015; Hu et al., 

2014). Battery prognostics often begins by estimating the 

current SOH of a battery in operation based on readily 

available measurements (i.e., voltage, current and 

temperature) from the battery (Lu et al., 2013). Capacity and 

internal resistance are two important SOH indicators that 

together determine the maximum amount of energy that a 

fully charged battery can deliver. SOL is a prognostic metric 

and often used interchangeably with RUL, which refers to the 

available service time left before SOH of the battery degrades 

to an unacceptable level. RUL can be measured in either 

calendar time (e.g., days, weeks, and months) or 

charge/discharge cycles. A Bayesian framework combining 

the relevance vector machine (RVM), trained with sparse 

Bayesian learning (SBL) (Tipping, 2001), and a particle 

filter-based approach was proposed for prognostics of a Li-

ion battery based on electrochemical impedance 

measurements (Saha, Goebel, Poll, et al., 2009). In order to 

eliminate the reliance of prognostics on impedance 

measurement equipment, researchers developed various 

model-based approaches that predict RUL by extrapolating a 

capacity fade model (Saha & Goebel, 2009; Liu et al., 2010; 

Wang et al., 2013; Dickerson et al., 2015). An integrated 

method for capacity estimation and RUL prediction of Li-ion 

battery was later developed and applied to Li-ion cells for 

implantable medical devices (Hu et al., 2014). The method 

employed the coulomb counting approach to estimate battery 

capacity based on the difference in the SOC values before and 

after partial charge/discharge. Based on the capacity 

estimates, a Gauss-Hermite particle filter was used to online 

update an empirical capacity fade model and project the 

updated model to an end-of-life (EOL) limit for RUL 

prediction. More recently, the RVM approach was leveraged 

to estimate battery capacity by approximating a nonlinear 

mapping from features (extracted from voltage and current 

measurements) to capacity (Hu et al., 2015; Hu et al., 2016), 

and RUL prediction was performed by first fitting linear 

models to random trajectories of capacity estimates and then 

extrapolating the models to an EOL limit (Hu et al., 2016).  

Despite significant advances in battery prognostics, research 

innovations are still needed to develop new approaches that 

can leverage large volumes of data to achieve robust RUL 

prediction. In particular, the goal is to perform reliable RUL 

prediction even in the presence of corruptions (or errors) in 

capacity features. In this paper, a new data-driven approach 

to RUL prediction is proposed and applied to a Li-ion battery 

used in implantable medical devices. The new approach 

fundamentally addresses the issue of input data noise via a 

new technique known as bilinear kernel regression. Specific 

innovations of the approach include: i) a general framework 

for robust sparse prognostics that effectively incorporates 

sparsity into kernel regression and implicitly compensates for 

errors in capacity features; and ii) two numerical procedures 

for error estimation that efficiently derive optimal values of 

the regression model parameters. We use 10 years’ 

continuous cycling data on eight Li-ion prismatic cells to 

demonstrate the effectiveness of the proposed approach. 

Moreover, we compare our proposed bilinear kernel 

regression framework with previously existing sparse 

regression approaches, and demonstrate uniformly improved 

prediction performance. This paper is organized as follows. 

Section 2 presents the fundamentals of the proposed 

approach. The approach is applied to a Li-ion battery used in 

implantable medical devices. Section 3 discusses the 

experimental results of this application. The paper is 

concluded in Section 4. 

2. TECHNICAL APPROACH 

In this study, the capacity of a Li-ion battery cell is viewed as 

the SOH indicator of the cell. The cell capacity quantifies the 

maximum amount of charge that the cell can hold. It tends to 

fade slowly over time, and typically decreases 1.0% or less in 

a month with regular use. Given the capacity values estimated 

by an existing estimation algorithm, we are interested in 

predicting the remaining useful life (RUL) of the cell, i.e., 

how long the cell is expected to last before the capacity fade 

reaches an unacceptable level. This section is dedicated to 

describing the proposed data-driven approach for doing so. 

Section 2.1 defines the problem of data-driven prognostics 

considered in this study and discusses the application of 

kernel regression to solve this problem; Section 2.2 presents 

the fundamentals of a classical sparse regression technique, 

namely the Least Absolute Selection and Shrinkage Operator 

(LASSO), and discusses its application to RUL prediction 

when capacity estimates and RUL responses are error-free; 

and Section 2.3 describes the fundaments of a robust sparse 

regression technique, namely bilinear kernel regression, and 

discusses its application to RUL prediction with errors in the 

capacity estimates.  

2.1. Fundamentals 

Kernel regression is a non-parametric regression technique 

that establishes a set of identical weighted functions, called 

local kernels, from the training data points, and a training 

process is employed to adjust the weights of the kernels to 

achieve the best-fit line at these data points. In the context of 

battery prognostics, a kernel regression algorithm takes the 

(estimated) capacity values of a battery cell as the inputs, and 

produces the (predicted) RUL as the output.  In this regard, 

kernel regression approximates the complex mapping from 

the capacity feature (x) space to the RUL state (y) space (see 

Fig. 1). 
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Figure 1. Approximation of mapping from capacity feature 

space to RUL state space by kernel regression. 

 

Assume that we are given a set of training data {(xi, yi)}, i =1, 

2, …, n, consisting of n samples from an arbitrary distribution 

D. Here, xi represents the data features, each represented by 

an m-dimensional vector consisting of the m most-recently 

calculated capacity estimates. Moreover, yi represents the 

(measured or true) RUL values for the corresponding 

capacity estimates. Our goal is to investigate a purely data-

driven machine learning approach that predicts the RUL from 

the capacity estimates. The approach employs a nonlinear 

kernel regression model of the form: 

 𝑦(𝐱) =  ∑ 𝑤𝑖𝜅(𝐱, 𝐱𝑖)

𝑛

𝑖=1

+ 𝑤0 (1) 

where x is a (test) feature vector, y is the predicted RUL, w = 

(w0, …, wn)
T represent the kernel weights, and (x,xi) is a 

suitable kernel function. The choice of kernel  is somewhat 

flexible, but the key thing to note is that it is centered on the 

training point xi. A typical kernel used in nonlinear prediction 

applications is the Gaussian kernel function: 

 𝜅(𝐱, 𝐱𝑖) =  exp (−
1

𝑟2
‖𝐱 − 𝐱𝑖‖2

2) (2) 

where r is a pre-chosen parameter called the kernel 

bandwidth. We use this kernel function in all our experiments 

below. The goal of nonlinear kernel regression is to learn the 

optimal model (parameterized by the weight vector w) that 

provides the best prediction performance. Numerous 

algorithms for learning nonlinear prediction functions have 

been proposed in the machine learning literature, including 

singular value decomposition (SVD)-based approaches, 

stochastic gradient descent, and kernel least-squares 

(Trefethen & Bau, 1997).  

While kernel methods are known to provide very good 

prediction performance, they are often prone to overfitting to 

the training data and their performance can degrade on 

unseen test samples. Following the principle of Occam’s 

Razor, machine learning algorithms for nonlinear prediction 

often attempt to learn a simple model that best explains the 

data. From a computational standpoint, these algorithms 

learn prediction models by solving a regularized problem that 

balances two competing objectives (training error versus 

model complexity). Again, numerous prediction algorithms 

that exploit such regularization assumptions have been 

developed in the literature. One approach that has been 

explored in detail in the PHM literature is the Sparse 

Bayesian Learning (SBL) approach (Tipping, 2001) that 

constructs a nonlinear regression model, known as the RVM, 

for online estimation of battery capacity (Hu et al., 2015; Hu 

et al., 2016).  The RVM solves a Bayesian inference problem 

by imposing a sparse regression model on the optimal 

prediction weight vector, i.e., only a small subset of the 

coordinates of the optimal w are permitted to be nonzero. 

Tests reveal that such sparsity-based regularization methods 

yield better generalizability to unseen test samples, and also 

offer improved interpretability in terms of prediction 

performance. 

2.2. RUL Prediction using the LASSO 

We first propose an alternative sparsity-regularized approach 

for RUL prediction. Our approach is based on (now classical) 

optimization formulation in sparse regression called the Least 

Absolute Selection and Shrinkage Operator (LASSO). First, 

using the capacity estimates {xi}, we construct the design 

matrix  of size 𝑛 × (𝑛 + 1), where: 

 
𝜑𝑖𝑗 = 1 for j = 1, and 𝜑𝑖𝑗 =

𝜅(𝐱𝑖 , 𝐱𝑖−1) for j = 2, …, n+1 
(3) 

Next, we arrange the corresponding RUL measurements as a 

response vector y = (y0, …, yn)
T. Finally, we define a non-

negative real valued parameter  that controls the tradeoff 

between the goodness of prediction fit and the sparsity of the 

prediction vector.  

Having defined these quantities, we now obtain a prediction 

vector by solving the convex optimization problem: 

 �̂� = arg min  𝜆‖𝐰‖1 + ‖𝐲 − Φ𝐰‖2
2 (4) 

Here, ‖. ‖𝑝
  denotes the ℓ𝑝-norm of a given vector. The choice 

of the tradeoff parameter  is dataset-dependent; higher 

values encourage greater sparsity (i.e., fewer nonzero 

coefficients) in the prediction vector, and vice versa. In our 

experiments below (see Section 3), we chose the parameters 

based on leave-one-out cross-validation (LOOCV).  

The optimization problem in Eq. (4) can be solved using any 

of a number of off-the-shelf methods for convex 

programming, including cutting-plane methods, interior-

point methods, and second-order cone programming. Since 

the datasets that we consider are medium-to-large scale (see 

Section 3.2), interior-point methods are too slow for our 

problem and therefore we limit our study to first-order 

iterative convex programming methods that only use 

(sub)gradient information while making progress towards the 

optimal solution. Specifically, in our experiments we use 

Capacity feature 

space 
RUL state 

space

Kernel regression 

model
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spectral projected gradient (SPGL1), which has been 

developed in the context of compressive sensing (Van Den 

Berg & Friedlander, 2008) for solving large-scale sparse 

optimization problems. 

The LASSO can be viewed as a close relative of the RVM. 

Indeed, a Bayesian interpretation of the LASSO demonstrates 

that the solution to a LASSO problem is, in fact, the 

maximum a posteriori (MAP) estimate of the parameters w, 

when the prior p(w) is specified by a multi-dimensional 

Laplace probability density function. Several studies have 

shown that convex optimization methods such as the LASSO 

exhibit typically faster convergence (in terms of number of 

iterations) than Bayesian inference approaches (Roth et al. 

2008). However, in contrast to Bayesian methods, our 

LASSO-based formulation does not produce a full posterior 

distribution of the prediction parameters. In our experiments 

below, we compare the LASSO with the SBL approach 

(Tipping, 2001).  

2.3. RUL Prediction using Bilinear Kernel Regression  

Fundamentals of Bilinear Kernel Regression  

Until now, we have discussed regression approaches for 

prediction that (implicitly) assumes that the training samples 

(capacity estimates as well as RUL responses) are error-free. 

However, in reality, measurements (i.e., cell voltage, current 

and temperature) are rarely pristine. Whether due to human, 

instrumentation, or computation errors, it is very likely that 

capacity estimates are corrupted. Corruptions can occur due 

to noise in the measurements, owing to faulty sensor 

operation or variability in the power load and temperature 

conditions, or errors by a capacity estimation algorithm. 

Corruptions can also occur due to outliers, owing to sensor 

failure or human errors. 

Standard regression methods do not account for the 

possibility of such corruptions, and the consequence is that 

the inferred prediction model can be grossly incorrect, 

leading to unpredictable results while testing on new unseen 

data points. Our hypothesis is that we can build improved 

RUL prediction models if we explicitly capture and account 

for errors in the training data. We propose a unified 

optimization formulation for prediction of battery RUL from 

capacity estimates that addresses this hypothesis.  

First, we propose a mathematical representation of corrupted 

observations as follows. Suppose the (estimated) capacity 

measurements available to the regression method are given 

by: 

 𝐳𝑖 = 𝐱𝑖 + 𝐮𝑖 (5) 

where 𝐮𝑖 is a vector of noise values whose dimension equals 

the feature dimension, and whose values are generated from 

some probability distribution. Consequently, we use the 

measurements zi to construct a (contaminated) kernel matrix 

K using Eq. (3). The relation to the “true” kernel matrix is 

given by: 

 𝐾 = Φ + 𝐸 (6) 

where E is an error matrix. The two modes of corruption that 

we consider are both special cases of Eq. (6). For the additive 

noise model, we assume that the capacity estimates are 

contaminated with independent Gaussian noise, i.e., each 

estimate is perturbed by a small independently chosen 

random variable from a normal distribution. Up to a first-

order approximation, the effect of such contamination can be 

modeled by assuming that the entries of E are i.i.d. samples 

from a Gaussian distribution with some variance 2. For the 

outlier noise model, we assume that the capacity 

measurements are contaminated with sparse (but unbounded) 

noise, i.e., a randomly chosen fraction of the observations are 

arbitrary distorted. Up to a first-order approximation, the 

effect of such contamination can be modeled via a sparsity 

assumption on the error matrix E. 

Given the (contaminated) kernel matrix K and the measured 

(or true) RUL values y, we solve a generalization of the 

optimization problem in Eq. (4) by jointly estimating both the 

optimal prediction vector as well as the error matrix: 

 

(�̂�, �̂�)  
= arg min  𝜆‖𝐰‖1 + 𝜏‖𝑣𝑒𝑐(𝐸)‖𝑝

𝑝

+ ‖𝐲 − (𝐾 − 𝐸)𝐰‖2
2 

(7) 

Here, the vec() operator vectorizes the contents of an arbitrary 

matrix in column-major order. The norm parameter p is set to 

be either 1 or 2 depending on the noise model; the case p = 2 

models additive noise and encourages dense estimates of the 

error, while the case p = 1 models outlier noise. As before, 

the parameter  controls the sparsity of the final solution, 

while the parameter  controls the norm of the aggregate 

errors.   

In theory, the solution to Eq. (7) will produce a sparse 

prediction vector �̂� that fits a kernel regression model to the 

“denoised” kernel matrix 𝐾 − 𝐸. The denoising is implicit 

since we simultaneously remove the noise in the kernel 

matrix as well as estimate the prediction model. We note that 

unlike Eq. (4), the optimization problem in Eq. (7) is no 

longer convex. In particular, the squared-error loss term in 

Eq. (7) is a bilinear function of the optimization variables w, 

E. Therefore, Eq. (7) is an instance of penalized bilinear 

regression. Variants of bilinear regression have been 

previously explored in the machine learning literature in 

(Herman & Strohmer, 2010). In particular, a similar 

optimization problem is proposed to develop robust versions 

of the LASSO that are less susceptible to outlier errors in the 

training data (Chen et al., 2013). To the best of our 

knowledge, the application of this method to battery-life 

prognostics has not been attempted. In our experiments below 

(see Section 3.4), we see that accounting for the errors in the 
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measurements leads to improvements over the standard 

LASSO in all test cases, sometimes by a large amount. 

Algorithm for Bilinear Kernel Regression 

Since, the optimization problem in Eq. (7) is non-convex, off-

the-shelf solvers for nonlinear convex optimization cannot be 

directly used to solve this problem. However, due to the 

bilinear nature of the prediction error term in the objective 

function, we observe that the problem is convex, provided we 

fix either one of the variables (w or E) and optimize over the 

other variable. This motivates the following, natural two-step 

iterative procedure based on alternating minimization: 

Step 1 Suppose we fix E. Then, minimizing the objective 

function in Eq. (7) over all possible prediction vectors w 

reduces to a variant of the original LASSO formulation. 

This sub-problem can be solved using convex 

optimization methods such as SPGL1.  

Step 2 Suppose we fix w. Then, minimizing the objective 

function in Eq. (7) over all possible error matrices E 

reduces to an ℓ𝑝-regularized least squares problem. The 

ℓ𝑝-norm is convex for both p = 1 and p = 2. For p = 1, 

we can solve the sub-problem using a modification of 

SPGL1. For p = 2, the sub-problem can be reduced to 

ordinary penalized least-squares (also known as 

Tikhonov regularization (Tikhonov & Arsenin, 1977), 

and can be solved using standard least-squares methods 

such as conjugate gradients.  

Table 1 summarizes the overall procedure to solve the 

optimization problem in Eq. (7). The basic idea is to alternate 

between solving for E and w. In the limit of infinitely many 

iterations, this procedure will converge to a local minimum 

of the objective function in Eq. (7). In practice, we can only 

execute a finite number of iterations. Therefore, we fix an 

input parameter T (representing the maximum allowable 

iteration count) and at the end of each iteration, we record the 

prediction error. The final estimates �̂�, �̂�  are declared by 

determining the iteration index that yielded the minimum 

objective function. The global optimality of such a method 

(and for non-convex optimization algorithms in general) 

cannot be guaranteed, but it serves as an effective heuristic. 

We leave as an open question the theoretical analysis of the 

above alternating minimization approach.  

3. EXPERIMENTAL RESULTS 

The verification of the proposed approach was accomplished 

by using 10 years’ continuous cycling data acquired from 

eight Li-ion prismatic cells. This section reports the results of 

this verification. Section 3.1 presents the test procedure along 

with the cycling performance of the test cells. Section 3.2 

gives the implementation details of several different methods. 

Section 3.3 describes the error metric used to quantify the 

performance of these methods in RUL prediction. The RUL 

prediction results are reported in Section 3.4.  

3.1. Test Procedure and Cycling Data 

Li-ion cells were constructed in hermetically sealed prismatic 

cases between 2002 and 2012 and subjected to full depth of 

discharge cycling with a nominally weekly discharge rate 

(C/168 discharge) under 37oC (Hu, et al., 2014). The cycling 

test was conducted with the following parameter settings: (i) 

the charge rate (ICC) for the CC charge was C/6; (ii) the charge 

cutoff voltage (Vmax) was 4.075 V; (iii) the time duration (tCV 

− tCC) of the CV charge was 30 min; and (iv) the discharge 

rate was C/150 or a nominally weekly discharge rate. The test 

attempted to simulate a use condition similar to patient use in 

medical applications. The weekly rate discharge capacities 

are plotted against the time on test in Fig. 2. Please note that, 

for confidentiality reasons, the discharge capacity of a cell in 

Fig. 2 and in the discussions thereafter is presented after 

Table 1. A pseudocode representation of the 

proposed approach for RUL prediction of Li-ion 

battery. 

 

 

ALGORITHM: Alternating minimization for 

regularized bilinear regression. 

 

INPUTS: Training data {(xi, yi)}, i=1, 2, …, n.  

OUTPUTS: Estimated kernel prediction vector �̂� . 

PARAMETERS: Optimization parameters  and 

, kernel bandwidth r, number of iterations T  

 

1. Initialize:  𝐰0̂ ← 0, 𝐸0̂ ← 0, 𝑡 ← 0. 

2. Compute: the kernel matrix K using 

Equation (2). 

3. While t < T do: 

a. 𝑡 ← 𝑡 + 1 

b. Set 𝐾 = 𝐾 −  𝐸�̂�. Solve: 

 �̂�𝑡+1 = arg min  𝜆‖𝐰‖1 + ‖𝐲 − 𝐾𝐰‖2
2 

c. Set �̅� = 𝐲 − 𝐾�̂�𝑡+1.  Solve: 

 �̂�𝑡+1 = arg min  𝜏‖𝑣𝑒𝑐(𝐸)‖𝑝
𝑝
 

  +‖�̅� + 𝐸�̂�𝑡+1‖2
2 

d. Record prediction error: 

 𝑃𝑟𝑒𝑑𝐸𝑟𝑟(𝑡) = ‖𝐲 − (𝐾 − �̂�𝑡+1)�̂�𝑡+1‖
2

2
 

4. Find 𝑡∗ that minimizes 𝑃𝑟𝑒𝑑𝑒𝑟𝑟(𝑡).  

5. Output: �̂� ← �̂�𝑡∗ 
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being normalized by the beginning-of-life (BOL) discharge 

capacity of the cell. As shown in Fig. 2, 80% of the initial 

capacity is retained even after 10 years of repeated cycling at 

an elevated temperature, indicating exceedingly stable cell 

performance. The cycling data also indicate consistent 

performance of cells manufactured over a long time period.  

 

3.2. Prognostic Data Generation and Method 

Implementation 

In this experimental study, the cycling data from the eight 

2002 cells in Fig. 2 were used to verify the effectiveness of 

the proposed approach in the RUL prediction. Each feature 

vector (or data point) xi consists of the 3 most-recently 

measured capacities (i.e., m = 3). To focus our discussion on 

RUL prediction, we did not implement capacity estimation in 

this study, and instead used measured capacities to construct 

the feature vectors. Each feature vector, 𝐱𝑖 , in the training 

data set was corrupted with additive noise, 𝑛𝑖, where 𝑛𝑖 is a 

random sample from a zero-mean normal distribution with 

standard deviation 𝜎 taking one of the following: 0.0, 0.005, 

0.010 and 0.015. For each 𝜎 value, all methods were tested 

using two 8-fold cross validation (CV) experiments: the first 

where the test data contained no additive noise, and the 

second where the test data was corrupted with additive noise 

from the same normal distribution as the training data. To 

minimize the effect of randomness in additive noise, the data 

generation and 8-fold cross validation were repeated 10 

times.  

A cell is considered to reach the EOL when the measured 

discharge capacity of the cell fades to 78.5% of its initial 

discharge capacity (Hu et al., 2014). For any test cell whose 

measured capacities did not reach this EOL limit, the EOL of 

the cell was identified through a linear extrapolation of the 

capacity data from the last six charge/discharge cycles. To 

detect outliers in RUL prediction data, caused by spurious 

capacity readings input into the proposed models, a linear fit 

of the data was performed using the robust regression 

described by Holland in (Holland et al., 1977). Any residual 

greater than 15 median absolute deviations was removed 

from the prediction data and not used in the calculation of 

error.  

The tradeoff parameters, 𝜆 in Eq. (4) and 𝜆 and 𝜏 in Eq. (7), 

were determined empirically, and for each, the value 

minimizing the overall root-mean-square (RMS) error (see 

the definition in Section 3.3) of a 𝜎 = 0.01 CV was used for 

all trials. For both LASSO and bilinear regression, 𝜆  was 

36,000. For estim ation of the error matrix, 𝜏𝐿𝐴𝑆𝑆𝑂  and 

𝜏𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 were 26,000 and 16,000, respectively. The kernel 

bandwith, 𝑟, in Eq. (2) was also empirically determined, and 

was 0.05 for LASSO and bilinear regression and 0.2 for 

RVM.  

3.3. Error Metric 

The RUL is used as the relevant metric for determining the 

state of life (SOL) of Li-ion battery. We compare the 

prediction performance of the proposed methods (LASSO, 

bilinear regression with Tikhonov Regularization (our 

proposed algorithm with p=2) to estimate errors, and bilinear 

regression using LASSO to estimate errors (our proposed 

algorithm with p=1)) to that of RVM described in (Hu et al., 

2015). The accuracy of a method was evaluated by using the 

k-fold CV. In this study, the complete feature data set X 

consists of eight mutually exclusive subsets or folds X1, X2, 

…, X8 that were respectively obtained from the eight 2002 

cells. In each CV trial, of the eight subsets, one was used as 

the test set and the other seven subsets were put together as a 

training set. The CV process was performed eight times (i.e., 

the total number of CV trials is eight), with each of the eight 

subsets left out exactly once as the test set. Thus, all the data 

points in the complete data set were used for both training 

and testing. Let Il = {i: xiXl}, l = 1, 2,…, 8, denote the index 

set of the feature vectors that construct the subset Xl. The CV 

root mean square error (RMSE) is computed as the root 

square of the average error over all the eight CV trials, 

expressed as 

 𝑅𝑀𝑆𝐸 = √
1

𝑈
∑ ∑ (�̂�𝐗\𝐗𝑙

(𝐱𝑖) − 𝑦(𝐱𝑖))
2

𝑖∈𝐈𝑙

8

𝑙=1
 (8) 

where U is the number of feature vectors for the CV, �̂�𝐗\𝐗𝑙
 is 

the predicted RUL by the method trained with the complete 

data set X excluding the subset Xl, and y(xi) is the true RUL 

of xi. The error formula in Eq. (8) indicates that all the U 

feature vectors in the complete data set X are used for both 

training and testing, and each feature vector is used for testing 

exactly once and for training seven times.  

 

 

Figure 2. Cycling performance of cells manufactured and 

cycled between 2002 and 2012 (Hu, et al., 2014). 
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Figure 3. Estimated error matrix created as an intermediate 

step of bilinear regression with Tikhonov Regularization 

where 𝜎 = 0.01. Errors are reported as a percentage of the 

maximum value in the Gaussian kernel, 𝜅. 

3.4. RUL Prediction Results 

To determine the accuracy of a given prediction method, the 

errors across all cells of the CV were aggregated and a single 

RMS value was calculated using Eq. (8). Table 2 summarizes 

the accuracy of all prediction methods with variable amounts 

of noise in the training data and test data. With uncorrupted 

test data, RVM was outperformed by all prediction methods 

proposed in this paper; LASSO without error estimation was 

outperformed by both methods incorporating error 

estimation. Moreover, error modeling with Tikhonov 

regularization outperformed error modeling with LASSO for 

the three of the four test cases. When test data is corrupted 

with small amounts of noise all models provide predictions 

similar to the error-free predictions in Table 2; greater levels 

of noise in the test data overwhelms the models ability to 

make accurate predictions. 

Figure 3 demonstrates an example of an estimated error 

matrix (displayed as a grayscale image) generated in one of 

the intermediate steps of bilinear regression with Tikhonov 

regularization. If any data point 𝐱𝑖 is imbued with error, we 

would expect our estimation of the 𝑖th row of our error matrix 

to be mostly non-zero (i.e. error-filled). This phenomenon is 

demonstrated in Fig. 3, and by inspection we can infer that 

the rows with non-zero entries correspond to erroneous data 

points. 

Figure 4 shows estimates of the Cumulative Density Function 

(CDF) for all prediction methods. The CDF estimate was 

created using the aggregated absolute value of errors from an 

8-cell CV. In this CV, bilinear estimation using Tikhonov 

regularization outperforms all prediction methods and, as 

expected, a larger percentage of its errors are small. For all 

methods explored in this paper over 60% of predictions are 

within 30 cycles of the true RUL. 

 

 

Figure 4. Empirical CDF vs. absolute value of error for each 

prediction method. Here, 𝜎 = 0.01 for the training dataset; 

the test data was not corrupted.  RMSE – LASSO: 35.3.  

RMSE – Bilinear-LASSO: 34.5.  RMSE – Bilinear-

Tikhonov: 33.8. RMSE – RVM: 36.7. 

4. CONCLUSION 

This paper presents a data-driven approach to online RUL 

prediction of Li-ion battery by adopting bilinear kernel 

regression. This approach provides individual users of Li-ion 

battery-powered devices with estimates of the battery RUL 

over the whole service life. The RUL allows the users to 

schedule an optimal replacement near the EOL so that the 

devices can be used as long as possible, and at the same time, 

users’ safety is not compromised. Our contributions to 

battery prognostics include the formulation of a general 

framework for robust sparse prognostics, and the 

development of two numerical procedures for efficient error 

estimation. Experiments with 10 years’ continuous cycling 

data verify that the proposed approach achieves more 

accurate RUL prediction than existing data-driven 

approaches, and suggest that the proposed method is a 

promising methodology for the battery prognostics.  

It is important to note that the experimental data in Section 3 

were obtained from the eight Li-ion cells cycled with a 

constant discharge rate. Since the fade behavior is fairly 

consistent among the eight cells (see Fig. 2), a training data 

set, which carries the information about the fade behavior of 

7 training cells, is likely to be capable of capturing the fade 

behavior of the testing cell. In non-medical applications (e.g., 

hybrid and electric vehicles, and consumer electronics) where 

harsher and more inconsistent fade scenarios are often 
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encountered, the training data set may not fully represent the 

way a testing cell degrades, and in such cases, the data-driven 

methods discussed in this paper may produce inaccurate RUL 

predictions. Our future work will assess the effectiveness of 

the proposed data-driven methods in the presence of 

significant cell-to-cell variation in capacity fade as well as 

investigate the effect of dynamic loading conditions on the 

accuracy in RUL prediction.  Finally, we will also investigate 

Bayesian-inference algorithms that quantify the uncertainty 

in the predicted RUL estimates as a function of the noise 

level.

 

Table 2. A summary of prediction accuracy of different methods. Predictions were performed using error-free test data and 

using additive noise where 𝜎 is the same for both training and test data.  The standard deviation of the ten 8-fold CVs is 

presented with each RMSE. 

Prediction method 
Noise in training data (𝜎) Noise in training and test data (𝜎) 

0 0.005 0.01 0.015 0.005 0.01 0.015 

LASSO 
31.24 

(±0.00) 

33.05 

(±1.26) 

34.72 

(±2.33) 

50.42 

(±5.73) 

42.33 

(±4.77) 

61.53 

(±5.54) 

83.67 

(±11.23) 

Bilinear regression with LASSO 
30.26 

(±0.00) 

31.62 

(±1.47) 

33.28 

(±2.37) 

46.22 

(±5.54) 

40.96 

(±4.32) 

60.16 

(±5.11) 

82.40 

(±10.06) 

Bilinear regression with 

Tikhonov regularization 

29.57 

(±0.00) 

30.92 

(±1.49) 

32.8 

(±2.30) 

48.88 

(±6.16) 

40.57 

(±4.84) 

60.58 

(±4.99) 

83.52 

(±11.15) 

RVM 
30.91 

(±0.00) 

32.67 

(±1.00) 

36.16 

(±2.44) 

47.67 

(±4.24) 

41.50 

(±4.65) 

60.22 

(±5.77) 

82.58 

(±10.96) 
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