Hardware Development for the Controlled Fault Injection into a Turbofan Engine Air-Bleed Valve
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Gas path fault diagnostics assists operators in determining, and managing the health of gas turbine engines. Engine data depicting fault progression under realistic operating conditions is useful for the maturation of these diagnostic methods. In this paper, we present hardware created to inject a progressive fault in an air bleed valve of a high bypass turbofan engine during on-wing engine testing. The developed hardware interrupts and overrides the engine control computer’s command of the valve and allows for the nondestructive, progressive off-schedule operation of the air bleed valve. Numeri- cal simulation results based on NASA’s Commercial Modular Aero-Propulsion System Simulation 40k are presented to illustrate representative changes in measured engine parameters that can be expected during such an experiment.
How to Cite
##plugins.themes.bootstrap3.article.details##
Turbofan engine, Fault injection
Hunter, G. W., Lekki, J., & Simon, D. (2014). Overview of vehicle integrated propulsion research (vipr) testing. In Meeting abstracts (pp. 464–464).
Li, Y. (2002). Performance-analysis-based gas turbine diagnostics: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216(5), 363–377.
Linke-Diesinger, A. (2008). Systems of commercial turbofan engines: An introduction to systems functions. Springer.
May, R. D., Csank, J., Lavelle, T. M., Litt, J. S., & Guo, T.-H. (2010). A high-fidelity simulation of a generic commercial aircraft engine and controller. National Aeronautics and Space Administration, Glenn Research Center.
Rinehart, A. W., & Simon, D. L. (2014). An integrated architecture for aircraft engine performance monitoring and fault diagnostics: Engine test results.
Volponi, A. J., DePold, H., Ganguli, R., & Daguang, C. (2003). The use of kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. Journal of Engineering for Gas Turbines and Power, 125(4), 917–924.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.