References
Arulampalam, S., Maskell, S., Gordon, N. J., & Clapp, T. (2002). A tutorial on particle filters for online non- linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174- 188.
Brown, D., Abbas, M., Ginart, A., Ali, I., Kalgren, P., & Vachtsevanos, G. (2010). Turn-off Time as a Precursor for Gate Bipolar Transistor Latch-up Faults in Electric Motor Drives. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2010.
Celaya, J., Kulkarni, C., Biswas, G., & Goebel, K. (2011a).Towards Prognostics of Electrolytic Capacitors.Paper presented at the AIAA Infotech@Aerospace,
St. Louis, MO.
Celaya, J., Saxena, A., Wysocki, P., Saha, S., & Goebel, K.(2010a). Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2010.
Celaya, J. R., Patil, N., Saha, S., Wysocki, P., & Goebel, K. (2009). Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief). Paper presented at the Annual Conference of the Prognostics and Health Management Society 2009.
Celaya, J. R., Saxena, A., Vashchenko, V., Saha, S., & Goebel, K. (2011b). Prognostics of Power MOSFET. Paper presented at the 23nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), San Diego, CA.
Celaya, J. R., Wysocki, P., Vashchenko, V., Saha, S., & Goebel, K. (2010b). Accelerated aging system for prognostics of power semiconductor devices. Paper presented at the 2010 IEEE AUTOTESTCON.
Ginart, A., Roemer, M., Kalgren, P., & Goebel, K. (2008).Modeling Aging Effects of IGBTs in Power Drives by Ringing Characterization. Paper presented at the IEEE International Conference on Prognostics and Health Management.
Ginart, A. E., Ali, I. N., Celaya, J. R., Kalgren, P. W., Poll, S. D., & Roemer, M. J. (2010). Modeling SiO2 Ion Impurities Aging in Insulated Gate Power Devices Under Temperature and Voltage Stress. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2010.
Goebel, K., Saha, B., & Saxena, A. (2008). A Comparison of Three Data-Driven Techniques for Prognostics. Paper presented at the Proceedings of the 62nd Meeting of the Society For Machinery Failure Prevention Technology (MFPT).
Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel Approach to Nonlinear/Non-GaussianBayesian State Estimation. IEE Proceedings Radar and Signal Processing, 140(2), 107-113.
Meinhold, R. J., & Singpurwalla, N. D. (1983). Understanding the Kalman Filter. The American Statistician, 37(2), 123-127.
Patil, N., Celaya, J., Das, D., Goebel, K., & Pecht, M.(2009). Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics. IEEE Transactions on Reliability, 58(2), 276.
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
Saha, B., Celaya, J. R., Wysocki, P. F., & Goebel, K. F. (2009a). Towards prognostics for electronics components. Paper presented at the Aerospace conference, 2009 IEEE.
Saha, B., Goebel, K., & Christophersen, J. (2009b). Comparison of prognostic algorithms for estimating remaining useful life of batteries. Transactions of the Institute of Measurement and Control, 31(3-4), 293-308. doi: 10.1177/0142331208092030
Saha, S., Celaya, J. R., Vashchenko, V., Mahiuddin, S., & Goebel, K. F. (2011). Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs. Paper presented at the IEEE EnergyTech 2011.
Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, M. (2008, 6-9 Oct. 2008). Metrics for evaluating performance of prognostic techniques. Paper presented at the Prognostics and Health Management, 2008. PHM 2008. International Conference on.
Sonnenfeld, G., Goebel, K., & Celaya, J. R. (2008). An agile accelerated aging, characterization and scenario simulation system for gate controlled power transistors. Paper presented at the IEEE AUTOTESTCON 2008.
Welch, G., & Bishop, G. (2006). An Introduction to the Kalman Filter (TR 95-041): Department of Computer Science, University of North Carolina at Chapel Hill.