Towards Accreditation of Diagnostic Models for Improved Performance
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The research community mainly concentrates on developing new and updated diagnostic algorithms to achieve high diagnostic performance which is necessary but not sufficient for the diagnostic models that are embedded in software. The focus of this paper is to understand the requirements for accrediting diagnostic system models to meet high performance and safety criticality in case of both models and embedded system (model + software). For embedded systems, models need to be accredited first to allow a more accurate distinction of whether the model or the code within which the model is embedded is the cause of degraded performance. This is because, neither standards for models and simulations (NASA-STD-7009) nor software engineering requirements (NPR 7150.2A) are sufficient to accredit the models in embedded systems. NASA-STD- 7009 assesses the correctness of the physics in models and simulations and NPR 7150.2A lists software engineering requirements for NASA systems. Thus, it is important to understand the accreditation standards in terms of performance requirements of models in embedded systems that can smoothly transit from NASA-STD-7009 to NPR 7150.2A. We will discuss interactive diagnostic modeling evaluator (i-DME) as an accreditation tool that provides the performance requirements or limitations imposed while accrediting embedded systems. This process is done automatically, making accreditation feasible for larger diagnostic systems.
How to Cite
##plugins.themes.bootstrap3.article.details##
diagnostic performance, accreditation, diagnostic system models, safety critical
Daigle, M., Roychoudhury, I., Biswas, G., & Koutsoukos, X (2010). An event-based approach to distributed diagnosis of continuous systems. Proceedings of the 21st International Workshop on Principles of Diagnosis, pp. 15-22.
Kodali, A., Robinson, P., & Patterson-Hine, A. (2013). A framework to debug diagnostic matrices. Annual Conference of the Prognostics and Health Management Society 2013, October 14 - 17, New Orleans, LO.
Luo, J., Tu, H., Pattipati, K., Qiao, L., & Chigusa, S. (2006). Graphical models for diagnostic knowledge representation and inference. IEEE Instrum. Meas. Mag., vol. 9, no. 4, pp. 45–52.
NASA-STD-7009 (2008). Standards for models and simulations. NASA, https://standards.nasa.gov/ documents/viewdoc/3315599/3315599.
NASA software engineering handbook (2013). NASA Technical Handbook. NASA, http://swehb.nasa.gov /display/7150/7.15+-+Relationship+Between+NPR+ 7150.2+and+NASA-STD-7009# tabs-1.
NPR 7150.2A (2009).NASA Software engineering requirements. NASA, http://nodis3.gsfc.nasa. gov/displayDir.cfm?t=NPR&c=7150&s=2.
Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D., Lee, C., Mengshoel, O., Neukom, C., Nishikawa, D., Ossenfort, J., Sweet, A., Yentus, S., Roychoudhury, I., Daigle, M., Biswas,
G., & Koutsoukos, X. (2007). Advanced diagnostics and prognostics testbed. In Proc. DX’07, pp. 178–185.
Qualtech Systems Inc., www.teamqsi.com.
Sabetzadeh, M., Nejati, S., A., Briand, L., & Mills, A. E.(2011). Using SysML for modeling of safety-critical software–hardware interfaces: Guidelines and industry Experience. IEEE 13th International Symposium on High-Assurance Systems Engineering.
Sheppard, J. W., & Simpson, W. R. (1991). A mathematical model for integrated diagnostics. IEEE Design and Test of Computers, vol. 8, no. 4, pp. 25 – 38.
Sheppard, J. W., & Simpson, W. R. (1992). Applying testability analysis for integrated diagnostics. IEEE Design and Test of Computers, vol. 9, no. 3, pp. 65 – 78.
Sheppard, J. W., & Simpson, W. R. (1993). Performing effective fault isolation in integrated diagnostics. IEEE Design and Test of Computers, vol. 10, no. 2, pp. 78 – 90.
Sheppard, J. W., & Simpson, W. R. (1998). Managing conflicts in system diagnostics. IEEE Computer, vol. 31, no. 3, pp. 69 – 76.
Simpson, W. R., & Sheppard, J. W. (1991). System complexity and integrated diagnostics. IEEE Design and Test of Computers, vol. 8, no. 3, pp. 16 -30.
Simpson, W. R., & Sheppard, J. W. (1992). System testability assessment for integrated diagnostics. IEEE Design and Test of Computers, vol. 9, no. 1, pp. 40 -54.
Simpson, W. R., & Sheppard, J. W. (1993). Fault isolation in an integrated diagnostics. IEEE Design and Test of Computers, vol. 10, no. 1, pp. 52 -66.
Singh, S., Kodali, A., Choi, K., Pattipati, K., Namburu, S., Chigusa, S., Prokhorov, D.V., & Qiao, L. (2009). Dynamic multiple fault diagnosis: Mathematical formulations and solution techniques. IEEE Trans. Syst., Man, Cybern. A, vol. 39, no. 1, pp. 160–176.
Swenson, Jr., L. S., & Grimwood, J. M. (1989). This new ocean: A history of project Mercury. Published as NASA Special Publication-4201 in the NASA History Series.
Vaandrager, F. W. (2006). Does it pay-off? model-based verification and validation of embedded systems!. In F. A. Karelese (editor), PROGRESS White Papers.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.