An Energy-Based Prognostic Framework to Predict Fatigue Damage Evolution in Composites
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In this work, a prognostics framework to predict the evolution of damage in fiber-reinforced composites materials un- der fatigue loads is proposed. The assessment of internal damage thresholds is a challenge for fatigue prognostics in composites due to inherent uncertainties, existence of multiple damage modes, and their complex interactions. Our framework considers predicting the balance of release strain energies from competing damage modes to establish a reference threshold for prognostics. The approach is demonstrated on data collected from a run-to-failure tension-tension fatigue experiment measuring the evolution of fatigue damage in carbon-fiber-reinforced polymer (CFRP) cross-ply laminates. Results are presented for the prediction of expected degradation by micro-cracks for a given panel with the associated uncertainty estimates.
How to Cite
##plugins.themes.bootstrap3.article.details##
Fatigue Prognosis, RUL prediction, Physics based prognostics, composites
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE Transactions on, 50(2), 174–188.
Beaumont, P., Dimant, R., & Shercliff, H. (2006). Failure processes in composite materials: getting physical. Journal of Materials Science, 41(20), 6526–6546.
Bogdanoff, J., & Kozin, F. (1985). Probabilistic models of comulative damage. John Wiley & Sons.
Cappe ́,O.,Godsill,S.J.,&Moulines,E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899–924.
Chiachio, J., Chiachio, M., & Rus, G. (2011). An inverse- problem based stochastic approach to model the cumulative damage evolution of composites. Procedia Engineering, 14(0), 1557 - 1563.
Daigle, M., & Goebel, K. (2010). A model-based prognostics approach applied to pneumatic valves. International Journal of the PHM Society, 2(8), 16.
Daigle, M., & Goebel, K. (2011). Multiple damage progression paths in model-based prognostics. In Aerospace conference, 2011 IEEE (pp. 1–10).
Daigle, M. J., & Goebel, K. (2013). Model-based prognostics with concurrent damage progression processes. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 43(3), 535-546.
Doucet, A., De Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods in practice. Springer Verlag.
Ganesan, R. (2000). A data-driven stochastic approach to model and analyze test data on fatigue response. Com- puters & Structures, 76(4), 517–531.
Hashin, Z. (1985). Analysis of cracked laminates: a variational approach. Mechanics of Materials, 4(2), 121– 136.
Hosoi, A., Takamura, K., Sato, N., & Kawada, H. (2011). Quantitative evaluation of fatigue damage growth in cfrp laminates that changes due to applied stress level. International Journal of Fatigue, 33(6), 781–787.
Jamison, R. (1985). The role of microdamage in tensile failure of graphite/epoxy laminates. Composites Science and Technology, 24(2), 83–99.
Jamison, R. D., Schulte, K., Reifsnider, K. L., & Stinch- comb, W. W. (1984). Characterization and analysis of damage mechanisms in tension-tension fatigue of graphite/epoxy laminates. Effects of defects in composite materials, ASTM STP, 836, 21–55.
Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo methods for parameter estimation in general state- space models. In 15th IFAC Symposium on System Identification (Vol. 15).
Larrosa, C., & Chang, F. (2012). Real time in-situ damage classification, quantification and diagnosis for composite structures. In Proceedings of the 19th International Congress on Sound and Vibration (Vol. 15).
Lee, J., Allen, D., & Harris, C. (1989). Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks. Journal of Composite Materials, 23(12), 1273–1291.
Lee, J., & Hong, C. (1993). Refined two-dimensional analysis of cross-ply laminates with transverse cracks based on the assumed crack opening deformation. Composites Science and Technology, 46(2), 157–166.
Lin, Y., & Yang, J. (1983). On statistical moments of fatigue crack propagation. Engineering Fracture Mechanics, 18(2), 243–256.
Liu, J., & West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In A. Doucet, N. Freitas, & N. Gordon (Eds.), Sequential monte carlo methods in practice (p. 197-223). Springer New York.
Nairn, J., & Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. International Journal of Fracture, 57(1), 1–24.
Paris, P., Gomez, M., & Anderson, W. (1961). A rational analytic theory of fatigue. The Trend in Engineering, 13, 9–14.
Patwardhan, S. C., Narasimhan, S., Jagadeesan, P., Gopaluni, B., & Shah, S. L. (2012). Nonlinear bayesian state estimation: A review of recent developments. Control Engineering Practice, 20(10), 933 - 953.
Reifsnider, K., & Talug, A. (1980). Analysis of fatigue damage in composite laminates. International Journal of Fatigue, 2(1), 3 - 11.
Rowatt, J., & Spanos, P. (1998). Markov chain models for life prediction of composite laminates. Structural Safety, 20, 117–135.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al. (2008). Global sensitivity analysis: the primer. Wiley-Interscience.
Saxena, A., Celaya, J., Saha, B., Saha, B., & Goebel, K. (2010). Metrics for offline evaluation of prognostic performance. International Journal of the PHM Society, 1(1), 20.
Saxena, A., Goebel, K., Larrosa, C., Janapati, V., Roy, S., & Chang, F. (2011). Accelerated aging experiments for prognostics of damage growth in composites materials. In The 8th International Workshop on Structural Health Monitoring, F.-K. Chang, editor. (Vol. 15).
Storvik, G. (2002). Particle filters for state-space models with the presence of unknown static parameters. Signal Processing, IEEE Transactions on, 50(2), 281–289.
Talreja, R. (2008). Damage and fatigue in composites – A personal account. Composites Science and Technology, 68, 2585–2591.
Talreja, R., & Singh, C. V. (2012). Damage and failure of composite materials. Cambridge University Press.
Wei, B.-S., Johnson, S., & Haj-Ali, R. (2010). A stochastic fatigue damage method for composite materials based on Markov chains and infrared thermography. International Journal of Fatigue, 32(2), 350–360.
Wu, W., & Ni, C. (2004). Probabilistic models of fatigue crack propagation and their experimental verification. Probabilistic Engineering Mechanics, 19(3), 247–257.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.