Fault Diagnostics Using Network Motif Signature
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In modern vehicles, controls are distributed over multiple Electronic Control Units (ECUs) that are connected through in-vehicle communication networks. Fault diagnostics for such a distributed control system is very challenging, which has resulted in many no-trouble-found (NTF) cases during warranty repairs. To address this problem, we propose a novel network-theoretic approach that detects, identifies, and localizes faults using both the structure of the communication network (topological information) and message flow information. The proposed method not only enables the characterization of normal operation and a-priori known faults across communication networks, which is already beyond the current practice of individual ECU centric diagnostics, but also the diagnostics of unknown or cascading failures emerging from unexpected operational environments.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnostics, network-theory based IVHM, net-motif signature
Cordella, L.P., Pasquale, F., Sansone, and C., Vento, M. (2004). A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs, , IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(10), 1367-1372.
Djidjev, H., Sandine. G., and Storlie, C. (2011). Graph Based Statistical Analysis of Network Traffic, MLG.
Lu, T.-C., Zhang, Y., Allen, D. L. and Salman, S. M. (2011). Design for Fault Analysis Using Multi-Partite, Multi-Attribute Between Centrality Measures, PHM.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002), Network-motifs: Simple Building Blocks of Complex Networks, Science, vol. 298, no. 5594, pp. 824–827.
Wang, T., Srivatsa, M., Agrawal, D., and Liu, L. (2009), Learning, Indexing, and Diagnosing Network Faults, KDD.
Wernicke, S. (2006), Efficient Detection of Network Motifs, IEEE/ACM Transaction on Computational Biology and Bioinformatics, 3(4), 347-359.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.