References
Bai, F., Grimm, D., Talty, T., & Saraydar, C. (2011). Gossip Networks: The Enabler for Sparsely Populated VANETs. SAE-2011-01-0046, SAE World Congress. Detroit, MI.
Brockwell, P. J., & Davis, R. A. (1991). Time Series: Theory and Methods (Second ed.). New York: Springer-Verlag Inc.
Byttner, S., Rögnvaldsson, T., Svensson, M., Bitar, G., & Chominsky, W. (2009). Networked vehicles for automated fault detection. Proceedings of IEEE International Symposium on Circuits and Systems . Taipei, Taiwan.
Carr, B. J. (2005). Practical application of remote diagnostics. SAE World Congress. Detroit, Michigan.
Edwin, G. R., Chiang, Y.-M., Carter, W. C., Limthongkul, P., & Bishop, C. M. (2005). Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries. Journal of The Electrochemical Society, 152(1), A255-A263.
Kuschel, J. O. (2004). Presenting a conceptual framework for remote vehicle diagnostics. IRIS 27.
Millstein, S. (2002). vRM (vehicle Relationship Management). Convergence: Transportation Electronics Conference. Detroit, Michigan.
Rasmussen, C. E., & Williams, C. K. (2006). Gaussian Process for Machine Learning. Cambridge, Massachusetts: The MIT Press.
Saha, B. G., Poll, S., & Christophersen, J. (2009, February). Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 58(2 ), 291-296.
Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., et al. (2008). Metrics for Evaluating Performance of Prognostics Techniques. Proceedings of 1st International Conference on Prognostics and Health Management (PHM08). Denver, CO.
Schiffer, J., Sauer, D. U., Bindner, H., Cronin, T., Lundsager, P., & Kaiser, R. (2007). Model prediction for ranking lead-acid batteries according
to expected lifetiime in renewable energy systems and autonomous power-supply systems. Journal of Power Sources, 168, 66-78.
Shin, K., & Salman, M. (2010). Evidence Theory Based Automotive Battery Health Monitoring. SAE Int. J. Passeng. Cars - Electron. Electr. Syst., pp. 10-16.
Spiegel, M. R., Schiller, J. J., & Srinivasan, R. A. (2009). Probability and Statistics. New York: McGraw- Hill Companies Inc. .
Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., & Wu, B. (2006). Intelligent fault diagnosis and prognosis for engineering systems. Hoboken, New Jersey: John Wiley & Sons, Inc.
Vapnik, V. N. (1998). Statistical Learning Theory. New York, US: John Wiley & Sons, Inc.
You, S., Krage, m., & Jalics, L. (2005). Overview of remote diagnosis and maintenance for automotive systems. SAE World Congress. Detroit, MI.
Zhang, X., Grube, R., Shin, K., & Salman, M. (2008). Automotive Battery State-of-Health Monitoring: a Battery Cranking Voltage based Approach. Proceedings of the 2008 Integrated
System Health Management Conference. Covington, KY.
Zhang, X., Grube, R., Shin, K., & Salman, M. (2009). A parity-relation based approach to starting, lighting and ignition battery state-of-health monitoring: algorithm development. Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS). Barcelona, Spain.
Zhang, Y., Grantt, G. W., Rychlinski, M. J., Edwards, R. M., Correia, J. J., & Wolf, C. E. (2009). Connected vehicle diagnostics and prognostics, concept and initial practice. IEEE Transactions on Reliability, 58, 286-294.
Zoia, D. E. (2006). OnStar e-mail service hits million mark.
[Online] wardauto.com,http://wardsauto.com/ar/onstar_em ail_million/.