Fault Diagnosis of Gas Turbine Engine LRUs Using the Startup Characteristics
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper introduces a feature-extraction method to characterize gas turbine engine dynamics. The extracted features are used to develop a fault diagnosis and prognosis method for startup related sub-systems in gas turbine engines - the starter system, the ignition system and the fuel delivery system.
The startup of a gas turbine engine from ignition to idle speed is very critical not only for achieving a fast and efficient startup without incurring stall, but also for health monitoring of many subsystems involved. During startup, an engine goes through a number of phases during which various components become dominant. The proposed approach physically monitors the relevant phases of a startup by detecting distinct changes in engine behavior as it manifests in such critical variables as the core speed and the gas temperature. The startup process includes several known milestones, such as starter-on, light-off, peak gas temperature, and idle. As each of these is achieved, different engine components come into play and the dynamic response of the engine changes. Monitoring engine speed and exhaust gas temperature and their derivatives provides valuable insights into engine behavior.
The approach of the fault diagnosis system is as follows. The engine startup profiles of the core speed (N2) and the gas temperature are obtained and processed into a compact data set by identifying critical-to-characterization instances. The principal component analysis is applied to a number of parameters, and the fault is detected and mapped into three engine component failures which are the starter system failure, the ignition system failure, and the fuel delivery system failure.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnosis, startup, turbine engine, LRU
Uluyol, O., Kim, K., and Nwadiogbu, E., (2006). Synergistic use of soft computing technologies for the fault detection in gas turbine engines. IEEE Trans. Syst., Man Cybern., vol. 36(4), pp. 476-484.
Bishop, C. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press
Kim, K., Uluyol, O., and Ball, C., (2005). Fault Diagnosis and Prognosis for Fuel Supply System in Gas Turbine Engines. Proceedings of ASME IDETC 2005. September 24-28, Long Beach, CA.
Uluyol, O., Kim, K., and Ball, C., (2005). On-board Characterization of Engine Dynamics for Health Monitoring and Control. Proceedings of ASME Turbo Expo 2005. June 6-9, Reno, NV.
Parthasarathy, G., Mylaraswamy, D., Uluyol, O., and Kim, K., (2011). Readiness Approach for Propulsion Engine LRUs. Proceedings of MFPT 2011. May 10-12, Virginia Beach, VA.
Mylaraswamy, D., Parthasarathy, G., Kim, K., and Uluyol, O., (2011). Low-cost Embedded Scouts for Engine Health Monitoring. ISABE Conference 2011. September 12-16, Gothenburg, Sweden.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.