References
Alonso-Gonzalez, C., Moya, N., & Biswas, G. (2010). Factoring dynamic Bayesian networks using possible conflicts. In Proc. of the 21th International Workshop on Principles of Diagnosis (p. 7-14). Portland, OR, USA.
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.
Biswas, G., & Mahadevan, S. (2007, March). A Hierarchical model-based approach to systems health management. In Proc. of the 2007 IEEE Aerospace Conference.
Bregon, A., Pulido, B., & Biswas, G. (2009, Sep). Efficient on-line parameter estimation in TRANSCEND for non- linear systems. In Proc. of the Annual Conference of the Prognostics and Health Management Society 2009. San Diego, USA.
Bregon, A., Pulido, B., Biswas, G., & Koutsoukos, X. (2009). Generating possible conflicts from bond graphs using temporal causal graphs. In Proceedings of the 23rd European Conference on Modelling and Simulation (p. 675-682). Madrid, Spain.
Daigle, M., & Goebel, K. (2010a, October). Improving computational efficiency of prediction in model-based prognostics using the unscented transform. In Proc. of the Annual Conference of the Prognostics and Health Management Society 2010.
Daigle, M., & Goebel, K. (2010b, March). Model-based prognostics under limited sensing. In Proceedings of the 2010 IEEE Aerospace Conference.
Daigle, M., & Goebel, K. (2011, March). Multiple damage progression paths in model-based prognostics. In Proceedings of the 2011 IEEE Aerospace Conference.
Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208.
Hutchings, I. M. (1992). Tribology: friction and wear of engineering materials. CRC Press.
Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In Proceedings of the 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls (pp. 182–193).
Kallesøe, C. (2005). Fault detection and isolation in centrifugal pumps. Unpublished doctoral dissertation, Aalborg University.
Katayama, T. (2005). Subspace Methods for System Identification. Springer.
Luo, J., Pattipati, K. R., Qiao, L., & Chigusa, S. (2008, September). Model-based prognostic techniques applied to a suspension system. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 38(5), 1156 -1168.
Lyshevski, S. E. (1999). Electromechanical Systems, Electric Machines, and Applied Mechatronics. CRC.
Overschee, P., & Moor, B. D. (1996). Subspace Identification for Linear Systems. Boston, MA, USA: Kluwer Academic Publishers.
Pulido, B., & Alonso-Gonza ́lez, C. (2004, October). Possible Conflicts: a compilation technique for consistency- based diagnosis. IEEE Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics, 34(5), 2192-2206.
Roychoudhury, I., Biswas, G., & Koutsoukos, X. (2009, De- cember). Factoring dynamic Bayesian networks based on structural observability. In Proc. of the 48th IEEE Conference on Decision and Control (p. 244-250).
Saha, B., & Goebel, K. (2009, September). Modeling Li-ion battery capacity depletion in a particle filtering framework. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2009.
Saha, B., Saha, S., & Goebel, K. (2009). A distributed prognostic health management architecture. In Proceedings of the 2009 Conference of the Society for Machinery Failure Prevention Technology.
Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K.
(2010). Metrics for offline evaluation of prognostic performance. International Journal of Prognostics and Health Management.
Staroswiecki, M., & Declerck, P. (1989, July). Analytical redundancy in nonlinear interconnected systems by means of structural analysis. In IFAC Symp. on Advanced Information Processing in Automatic Control.
Westwick, D., & Verhaegen, M. (1996). Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing, 52(2), 235 - 258.
Williams, B., & Millar, B. (1998). Decompositional model- based learning and its analogy to diagnosis. In Proc. of the Fifteenth National Conference on Artificial Intelligence (p. 197-204).