A Comparative Study on Computation of Cumulative Distribution Function in Predicting Time of Failure of Engineering Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Estimating accurate Time-of-Failure (ToF) of a system is key in making the decisions that impact operational safety and optimize cost. In this context, it is interesting to note that different approaches have been explored to tackle the problem of estimating ToF. The difference is in part characterized by different definitions of the hazard zones. The conventional definition for the cumulative distribution function (CDF) calculation is assumed to have well-defined hazard zones, that is, hazard zones defined as a function of the system state trajectory. An alternate method suggests the use of hazard zones defined as a function of the system state at time , instead of hazard zones defined as a function of system state up to and including time k (Acuña and Orchard 2018, 2017). This paper explores these differences and their impact on ToF estimation. Results for the conventional CDF definition indicated that, (i) the cumulative distribution function is always an increasing function of time, even when realizations of the degradation process are not monotonic, (ii) the sum of all probabilities is always 1 and does not need to be normalized, and (iii) all probabilities are positive and less than or equal to 1. Similar results are not observed for CDF calculation with hazard zones defined as a function only of the system state at time k. Results for ToF estimation using Acuña's definition differ, suggesting that there is an underlying assumption of independence in the hazard zone definition. Therefore, we present an alternate definition of hazard zone which guarantees the properties of a well-defined CDF with a more straightforward ToF definition.
How to Cite
##plugins.themes.bootstrap3.article.details##
Probability of Failure, Hazard Zone, Time of Failure
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.