A Novel Automated Feature Extraction Method for Fault Diagnosis of Rotating Mechanical Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
A novel approach to feature extraction, capable of generating a number of robust features in an automated way, is introduced. Although the proposed method focuses on features on the frequency domain for vibration data related to rotating mechanical systems, it can be extended on different types of features. The method comprises of two simple models for the feature generation and a Particle Swarm Optimization system for establishing optimum or near optimum parameters for these models. The generated features are evaluated with a number of metrics, before they are used for diagnosis purposes. The features derive from real-world data related to a case of corroded bearings in a helicopter system. The extracted features of the proposed method are compared with some which were manually generated, and the former are found to be of superior quality. A series of diagnosis experiments based on the best extracted features was carried out. The results of these experiments appear to validate the performance of the automatically generated features.
How to Cite
##plugins.themes.bootstrap3.article.details##
fault diagnosis, feature extraction, particle swarm optimization
Downham, E. (1976) Vibration in rotating machinery: malfunction diagnosis—art and science, in Proceeding of the Institution of Mechanical Engineering—Vibration in Rotating Machinery, London, UK, pp. 1–6.
Kennedy, J. and Eberhard, R. (1995) “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks, IEEE Press, Piscataway, NJ, 1995, pp. 1942-1948.
Kennedy, J. and Eberhard, R., Shi. Y. (2001) Swarm Intelligence, Morgan Kaufmann, San Francisco, CA, 2001.
Mobley, K. (1999) Vibration Fundamentals, 1st ed., Butterworth-Heinemann.
Orchard, M. E. (2007) A Particle Filtering-Based Framework for On-line Fault Diagnosis and Failure Prognosis. Ph. D. thesis, Georgia Institute of Technology.
Patel, T. and Darpe, A. (2009) Experimental investigations on vibration response of misaligned rotors, Mechanical Systems and Signal Processing, vol. 23, pp. 2236-2252.
Qu, L. S. and Shen, Y. D. (1993) Orbit complexity: a new criterion for evaluating the dynamic quality of rotor system, in Proceedings of the Institution of Mechanical Engineers Part C 207, pp. 325–334.
Shi, D. F., Wang ,W. J., Unsworth, P. J., Qu L. S. (2005) Purification and feature extraction of shaft orbits for diagnosing large rotating machinery, Journal of Sound and Vibration, vol. 279, pp. 581- 600.
Voulgaris, Z. N. (2009) Discernibility Concept for Classification Problems. Ph. D. thesis, the Univer-sity of London.
V oulgaris, Z., Sconyers, C., V achtsevanos, G. (2010).
A Particle Swarm Optimization Approach to Feature Fusion for Failure Prognosis of Engineering Systems, in Proceedings of 18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, 2010, pp. 773-777.
Voulgaris, Z. and Sconyers, C. (2010) Z. Voulgaris, C. Sconyers. A Novel Feature Selection Method for Fault Diagnosis, in Proceedings of 6th IFIP Conference on Artificial Intelligence Applications & Innovations, October 2010 [pending publication].
Vachtsevanos, G., Lewis, F. L., Roemer, M., Hess, A., Wu B., (2006) Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 1st ed. Hoboken, New Jersey: John Wiley & Sons, Inc.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.