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ABSTRACT 

A novel approach to feature extraction, capable of 
generating a number of robust features in an automated 
way, is introduced. Although the proposed method 
focuses on features on the frequency domain for 
vibration data related to rotating mechanical systems, it 
can be extended on different types of features. The 
method comprises of two simple models for the feature 
generation and a Particle Swarm Optimization system 
for establishing optimum or near optimum parameters 
for these models. The generated features are evaluated 
with a number of metrics, before they are used for 
diagnosis purposes. The features derive from real-world 
data related to a case of corroded bearings in a 
helicopter system. The extracted features of the 
proposed method are compared with some which were 
manually generated, and the former are found to be of 
superior quality. A series of diagnosis experiments 
based on the best extracted features was carried out. 
The results of these experiments appear to validate the 
performance of the automatically generated features. 

 

1 INTRODUCTION 

The feature extraction methodology is a major 
component of the fault diagnosis process and probably 
one of the most challenging ones. No matter how 
robust the feature selection and the feature fusion 
methods are, which follow the feature extraction one, if 
the extracted features are not potent enough, the 
diagnosis results may suffer. Also, it is important that a 
number of features are extracted, since even if they are 
not very powerful their combination may yield a quite 
potent feature. Hence, it is crucial that a sufficient 
number of relatively good features are generated for 
fault diagnosis purposes. And if this whole process can 
be done automatically, it can truly be an asset for the 
whole process. 

2 LITERATURE REVIEW 

2.1 Feature Extraction Methods 

The existence of a fault in a system or component 
produces uncharacteristic behavior that can be captured 
through certain sensing spectra, typically vibration 
(Vachtsevanos et al., 2006).  Where it may not be a 
simple task to detect and diagnose a fault, processing 
and analyzing such sensor data may provide 
information about anomalous system behavior, from 
which fault data may be gleaned.  Such information is 
extracted in the form of features, scalar representations 
of signal information. 

In rotating machinery, vibration signals can be 
analyzed and features extracted from numerous 
domains.  The most simple and direct is the time 
domain, from which features such as root-mean-
squared (RMS), an approximation of signal strength; 
Kurtosis, a measure of “peakiness”; and entropy can all 
be extracted (Mobley, 1999; Qu and Shen, 1993; 
Decker, 2002).  These static features, however, are 
highly sensitive to operational variability, such as 
changes in loading conditions on the faulty component, 
and thus are less robust than features from more 
sophisticated domains. 

Due to rotation, vibration effects caused by a 
fault may occur periodically, making the frequency 
domain a source of many useful features.  FFT analysis 
of harmonics and subharmonics of main frequencies, 
such as bearing shaft speed or gear meshing frequency, 
is a typical source of features for both identifying an 
existing fault mode and diagnosing said fault.  
Typically, the first two harmonics, 1X and 2X, contain 
the most relevant information about the system 
behavior, in multiple frequency-based domains such as 
FFT, full-spectrum, auto-spectrum, or wavelet (Patel 
and Darpe, 2009; Downham, 1976).  Filtered orbit and 
sideband analysis on these harmonics can provide 
further fault information (Shi et al., 2005).  Including 
normalizing information such as total spectral energy 
can inhibit effects of operational variability. Other 
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ways of pinpointing a fault using vibration data exist, 
yet they are not as effective as the aforementioned 
ones. 

Common frequency-based features may be 
robust as they are common, but require explicit 
knowledge or restrictive assumptions about the system 
or component under analysis, at least in the case of 
rotating mechanical systems.  Not only does this 
complicate the feature extraction process, but 
unforeseen changes in the system may not be accounted 
for, leading to degradation in detection or diagnostic 
accuracy.  In these cases, an assumption-free, data-
driven method is needed to improve the feature 
extraction process. 

2.2 Particle Swarm Optimization 

The PSO method was originally developed by J. 
Kennedy and R. Eberhart in 1995 (Kennedy and 
Eberhard, 1995) as an optimizer the simulated social 
behavior in a fast and easy to fine-tune way. Even at 
that time, different variations of the algorithm were 
developed and tested, yet the one that prevailed was the 
one known today as classical PSO. In short, the PSO 
method attempts to find a global optimum solution to a 
given problem by maximizing or minimizing a function 
(fitness function). This is done by populating the 
solution space with a number of possible solutions 
(particles) that interact with each other and eventually 
convert to a (usually good approximation of) the 
optimum solution. 
  

3 METHODOLOGY 

The Automatic Feature Extraction (AFE) method 
proposed in this paper is relatively simple in concept. 
Particularly it comprises of two basic parts: establishing 
a model for the features and finding the optimum (or at 
least near optimum) parameters for this model using a 
Particle Swarm Optimization (PSO) program. 
Naturally, more than one model can be used at the same 
time, yielding a greater diversity in the extracted 
features and a wider search over the feature space. 

3.1 Feature Models 

Two models for the extracted features were made and 
used in this method. The reason for that is that we 
wished to have a large variety of features in order to 
form a large enough subset through a relatively strict 
feature filtering method we have also developed. 
 The first model has to do with taking a number of 
windows of a certain bandwidth of frequencies around 
a non-integer multiple of the shaft speed. A certain 
overlap between two consecutive windows is allowed 
and is part of the feature as a parameter. This model has 

a total of 4 parameters: center frequency, bandwidth, 
time-series window size, and window overlap. 
 The second model used is a more sophisticated one 
as it takes two bands of frequencies at the same time 
and calculates their ratio. Again some overlap is 
allowed between two windows and the frequency bands 
can be defined around different shaft speed multipliers 
and be of different width. This model has 6 parameters 
in total: two center frequencies and bandwidths, and 
one time-series window size and window overlap (to 
preserve ratio normality). 

3.2 Parameter Finding Using PSO 

The aforementioned features are quite generic and 
unless a good selection of values for the involved 
parameters is given, their potency is questionable. Yet, 
they were made generic on purpose so that they can 
cover a large range of solutions. To find the right 
values for the parameters involved a PSO method was 
implemented. This is a viable alternative for 
pinpointing the optimum values of the parameters since 
all of these parameters are continuous and belong to a 
well-defined interval. Also, PSO’s ability to avoid 
“getting trapped” in local minima allows it to function 
well for this kind of problem. 
 This method functions as follows: the members of 
the group of solutions (particles) are accelerated 
towards the pbest and gbest locations (which 
correspond to the best solution of the individual particle 
and the whole group). The accelerations involved are 
weighted by random numbers, which are different for 
the pbest and gbest locations. The velocity of each 
particle is limited to a given number, Vmax, so that the 
particles converge more easily to an optimum. This is 
an important parameter of the PSO method since it 
determines the resolution of the search space (high 
values of Vmax may result to particles passing by a 
good solution, while very small values may limit the 
search to locally good regions). According to (Kennedy 
and Eberhard, 2001) a good value for this parameter is 
±4.0. Other parameters of this method are the 
acceleration constants (c1 and c2), which correspond to 
the pbest and the gbest positions and are related to the 
tension of the system (which controls how much the 
swarm explores the search space before converging to 
an optimum solution). In most applications these 
parameters are set to the value of 2.0. 
 A number of fitness functions can be used for the 
evaluation of the various solutions for the particles of 
PSO. Some of these are the Spherical Index of 
Discernibility (Voulgaris, 2009), the Fischer 
Discriminant Ratio, the Exponential Correlation, a 
Monotonicity metric or the well-established and widely 
used Pearson Correlation. In this research the absolute 
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value of Pearson Correlation was used as a fitness 
function. This is defined in Eq. 1 as follows. 
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where  X is the feature value 
  Y is the wear level, and 
  n is the number of test points 
 

4 EXPERIMENTS AND RESULTS 

4.1 Data Description 

The data used for this research come from a series of 
experiments conducted for a project coded AVDPIP, 
involving corroded bearings for a helicopter module. 
These experiments involve a combination of video files 
and a set of sensor readings. In this research the focus 
is on the latter, a variety of vibration data files, for 
various operating conditions and wear levels. 
Particularly, the data are split into two types, axial and 
radial, corresponding to the two directions of the 
sensors that were placed to pick up the vibrations from 
the bearings. Also, the data involve two load levels, one 
of 500 lbs and one of 975 lbs. There were 10 data files 
for each case and 4 wear levels, including a ground 
truth baseline (no corrosion in the bearings). 
Furthermore, 3 rounds of experiments were carried out, 
the data from which were used in our analysis. 

4.2 Experiment Setup 

A number of features were extracted based on the given 
dataset, for both the axial and radial data. Afterwards, 
this feature set was filtered so that only the most potent 
and uncorrelated features remained. From the original 
32 extracted features (16 for each data type), four were 
in the final feature set. All of these features were based 
on multiples of the shaft frequency, as this type was the 
easiest to model. The selected features were then fused 
(combined) into a single feature (FF1) using a robust 
method introduced and described in (Voulgaris et al., 
2010). The fused feature was then used for diagnosis 
using a Particle Filter (PF) based method. 
 Parallel to all this, a set of five manually extracted 
features based on the same data and frequency domain 
was used. To obtain this feature set, all possible known 
features that could be manually derived from the 
vibration data were extracted. From this original feature 
set which comprised of about 10 features, the best 
performing ones were selected using a recently 
developed automated feature selection method 
(Voulgaris and Sconyers, 2010). Note that the 

methodology for extracting these features included, but 
was not limited to, investigating various multiples of 
the shaft frequency. However, it must be stressed that 
due to the vast amount of features that could be derived 
from the harmonics and sidebands, only the most 
common ones were manually extracted. 
 The performance of the extracted features was 
based on their correlation with the wear level and the 
correlations with each other, yielded another fused 
feature (FF2) which was also used for diagnosis. 
 The feature fusion method used was based on the 
relevant research presented in (Voulgaris et al., 2010). 
Briefly it can be summarized as follows: a model for 
the combined feature is given, comprising of all the 
available features and a corresponding weight 
parameter for each one of them (this takes the form of 
an exponent in the model). Then the PSO algorithm is 
applied on the parameters space to obtain a set of 
parameters such that it maximizes one of the feature 
evaluation metrics defined by the user. The one most 
commonly used is the absolute correlation with the 
wear level, so that the fused feature bears a monotonic 
relationship with the wear and closely follows its trend. 

4.3 Diagnosis Process 

The fault diagnosis performed involved a PF based 
technique, which is widely used for this purpose as well 
as for failure prognosis. This method involves the 
approximation of the probability distribution of the 
condition states using a swarm of points (particles) and 
a set of weights denoting discrete probability masses. 
These particles are easy to generate and update in real 
time, as they are based on a nonlinear dynamic growth 
model and a measurement model relating the system 
states with the observed fault indicators.  Two process 
modes, healthy and faulty, are represented by a binary 
state (0 for healthy, 1 for faulty), that enables the PF to 
detect the moment a fault is instantiated, and 
subsequently track the fault dimension (Orchard, 2007). 
 This PF method was implemented in a .NET 
framework, which operated in real-time as newer 
values from FF1 and FF2 were fed into the diagnosis 
system. 

4.4 Results 

The absolute correlations of the various extracted 
features are exhibited in Table 1. It is clear that the 
fused feature based on the selected automatically 
extracted feature was relatively better in terms of 
absolute correlation with the wear, than the other fused 
feature or any other feature for that matter. However, as 
this is based on the result of a single experiment 
(additional experiments will yield the exact same result 
due to the nature of the Fault Diagnosis method), it is 
not possible to obtain a statistical analysis of the 
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results. Yet, even if someone is not convinced that the 
result of proposed methodology is better than that of 
the manually selected feature set, and believes that both 
methods yield results of the same quality (i.e. the null 
hypothesis is not rejected), the proposed method is still 
better. This is because one does not have to undertake 
the time-consuming process of extracting the features 
from the vibration data one by one, with the risks of 
error that this process may have. 
 It must be stressed that although a lot of features 
were extracted in these experiments, this must not be 
confused with the amount of data available. The latter 
comprised of a small number of samples that rendered 
the possibility of a proper statistical analysis infeasible. 
 The fused features were validated based on a two-
fold approach: first the absolute correlation with the 
wear was calculated and then a PF-based Fault 
Diagnosis was conducted. 

Table 1: Absolute Correlation of Automatically and 
Manually Extracted Features with Level of Wear. The 
feature showing the highest absolute correlation with 

the wear level is depicted in bold. 

Feature |Correlation with Wear| 
A
F
E 

f3 0.8542 

f4 0.6242 

f29 0.6312 

f30 0.7229 

Fused (FF1) 0.9661 

M
a 
n 
u 
a 
l 

3x Axial 0.3421 

2x Radial 0.0256 

Total Energy 
Radial 

0.7259 

Tot. En. Ax. / 
1x Axial 

0.1006 

Tot. En. Rad. 
/ 1x Radial 

0.5228 

Fused (FF2) 0.9302 

The two fused features, FF1 and FF2, were used for the 
diagnosis of the corrosion of the bearings, using a 
Particle Filtering based technique. A screenshot of the 
fault diagnosis program for the manual, fused feature, 
FF2 can be seen in Figure 1 below. 

 

Figure 1: Fault Diagnosis screenshot 
 
The plot of the confidence of failure (upper right graph) 
shows the increase of the detection confidence as more 
feature data is input to the diagnosis program, with 
fault detection occurring when the confidence exceeds 
the detection threshold (blue line at 95%). 
 Interestingly, the FF1 feature yielded a much earlier 
detection of the fault at the 64th time cycle using the 
same diagnosis program, almost twice as quick as the 
FF2 feature detection (at the 120th time cycle). 

4.5 Discussion 

It is clear from the aforementioned results that the 
features extracted using the proposed method yield 
better correlation with the wear level, rendering them a 
better basis for fault diagnosis. Especially the fused 
feature that derives from the selected automatically 
extracted features yields an outstanding performance, 
something reflected in the performance of our particle 
filtering based fault diagnosis system. The early fault 
detection is of crucial significance, as it allows the 
commencement of the failure prognosis at an earlier 
stage. This may prove vital for the proper preparation 
for the failure, which translates to a more efficient 
resource management and the limiting of the risk of 
accident. 
 

5 CONCLUSIONS AND FUTURE WORK 

From the research conducted it can be concluded that 
the proposed method for feature extraction is quite 
promising and able to provide substantial aid in finding 
worthwhile features which can perform satisfactorily in 
a fault diagnosis scheme. 
 Future work on this topic will include more 
extensive testing of the method on other frequency 
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data, combination of this method with other feature-
related modules developed, and fine-tuning of the 
method to improve its efficiency and applicability. 
Also, it will be applied on a larger dataset, one that can 
be partitioned appropriately so that a more thorough k-
fold cross validation analysis can be conducted. 
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