An LSTM-Based Online Prediction Method for Building Electric Load During COVID-19
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Accurate prediction of electric load is critical to optimally controlling and operating buildings. It provides the opportunities to reduce building energy consumption and to implement advanced functionalities such as demand response in the context of smart grid. However, buildings are nonstationary and it is important to consider the underlying concept changes that will affect the load pattern. In this paper we present an online learning method for predicting building electric load during concept changes such as COVID-19. The proposed methods is based on online Long Short-Term Memory (LSTM) recurrent neural network. To speed up the learning process during concept changes and improve prediction accuracy, an ensemble of multiple models with different learning rates is used. The learning rates are updated in realtime to best adapt to the new concept while maintaining the learned information for the prediction.
How to Cite
##plugins.themes.bootstrap3.article.details##
Machine learning, LSTM, Load prediction, Concept change, Learning rate, Adaptive, COVID-19
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.