A novel prognostics solution for accurate identification of degradation patterns in turbo machines with variable observation window
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The degradation of a system is a time bound phenomenon, which leads to the deterioration of turbomachinery, in terms of performance and reliability. If undetected and not acted upon in time, this could also lead to sudden system failure, resulting in unplanned unit downtime and maintenance. Unplanned downtime of a turbomachine leads to severe production loss for the end customer and consequent economic damages. Early detection of a degradation pattern would provide the customer with the opportunity to timely carry out corrective actions, preventing an unscheduled down time. The paper evaluates degradation identification methodology currently known from literature and finds them not accurate enough for general purpose application required by the solution. The paper discusses a novel methodology which can accurately detect degradation patterns of timeseries data. Critical features of this methodology are novel time-based correlation enabled regression model with variable observation window, autonomous training, and automatic adjusting capability to incorporate operating behavior change or physical system replacement. This leads to high accuracy, high generalization, and domain agnostic application capability. Moreover, particular focus is given to achieving high probability of detection and a low probability of false alarm. The paper demonstrates the performance achieved by the methodology when applied to the field of prognostics and diagnostics of IoT connected turbomachines through 50+ real application cases.
How to Cite
##plugins.themes.bootstrap3.article.details##
degradation, monitoring, diagnostics, turbomachine
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.