References
Ahmad, S., Styp-Rekowski, K., Nedelkoski, S., & Kao, O. (2020). Autoencoder-based condition monitoring and anomaly detection method for rotating machines. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 4093-4102). IEEE.
Amarbayasgalan, T., Pham, V. H., Theera-Umpon, N., & Ryu, K. H. (2020). Unsupervised anomaly detection approach for time-series in multi-domains using deep reconstruction error. Symmetry, 12(8), 1251.
Chen, S., Yu, J., & Wang, S. (2020). One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes. Journal of Process Control, 87, 54-67.
Hassan, I. U., Panduru, K., & Walsh, J. (2024). An In-Depth Study of Vibration Sensors for Condition Monitoring. Sensors, 24(3), 740.
Hiruta, T., Maki, K., Kato, T., & Umeda, Y. (2021). Unsupervised learning based diagnosis model for anomaly detection of motor bearing with current data. Procedia CIRP, 98, 336-341.
Kamat, P., Marni, P., Cardoz, L., Irani, A., Gajula, A., Saha, A., Kumar, S. & Sugandhi, R. (2021). Bearing fault detection using comparative analysis of random forest, ANN, and autoencoder methods. In Communication and Intelligent Systems: Proceedings of ICCIS 2020 (pp. 157-171). Springer Singapore.
Kang, J., Kim, C. S., Kang, J. W., & Gwak, J. (2021). Anomaly detection of the brake operating unit on metro vehicles using a one-class LSTM autoencoder. Applied Sciences, 11(19), 9290.
Kumar, P., Khalid, S., & Kim, H. S. (2023). Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review. Mathematics, 11(13), 3008.
Lee, Y. K., Lee, S., & Kim, S. H. (2024). Real-Time Defect Monitoring of Laser Micro-drilling Using Reflective Light and Machine Learning Models. International Journal of Precision Engineering and Manufacturing, 25(1), 155-164.
Li, X., Li, X., & Ma, H. (2020). Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mechanical Systems and Signal Processing, 143, 106825.
Panza M. A., Pota M., & Esposito, M. (2023). Anomaly Detection Methods for Industrial Applications: A Comparative Study. Electronics. 2023; 12(18)
Park, K., & Lee, Y. (2023). Anomaly Detection in a Combined Driving System based on Unsupervised Learning. Journal of the Korean Society for Precision Engineering, 40(11), 921-928.
Schleipen, M., Gilani, S. S., Bischoff, T., & Pfrommer, J. (2016). OPC UA & Industrie 4.0-enabling technology with high diversity and variability. Procedia Cirp, 57, 315-320.
Shreve, D. H. (1994). Introduction to vibration technology. Proceedings of Predictive Maintenance Technology Conference. November.
Thi, N. D. T., Do, T. D., Jung, J. R., Jo, H., & Kim, Y. H. (2020). Anomaly detection for partial discharge in gas-insulated switchgears using autoencoder. IEEE Access, 8, 152248-152257.
Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., & Boulic, M. (2023). LSTM-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sensors Journal, 23(4), 3787-3800.
Wisal, M., & Oh, K. Y. (2023). A New Deep Learning Framework for Imbalance Detection of a Rotating Shaft. Sensors, 23(16), 7141.
Xu, W., Jang-Jaccard, J., Singh, A., Wei, Y., & Sabrina, F. (2021). Improving performance of autoencoder-based network anomaly detection on nsl-kdd dataset. IEEE Access, 9, 140136-140146.
Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., & Wei, M. (2019). A review on deep learning applications in prognostics and health management. IEEE Access, 7, 162415-162438.
Zhang, Y., Wang, Y., Yi, Y., Wang, J., Liu, J., & Chen, Z. (2021). Coupling matrix extraction of microwave filters by using one-dimensional convolutional autoencoders. Frontiers in Physics, 521.