References
Bhargava, C., Sharma, P. K., Senthilkumar, M., Padmanaban, S., Ramachandaramurthy, V. K., Leonowicz, Z., ... Mitolo, M. (2020). Review of health prognostics and condition monitoring of electronic components. IEEE Access, 8, 75163-75183. doi: 10.1109/ ACCESS.2020.2989410 Bhat, D., Muench, S., & Roellig, M. (2023). Application of machine learning algorithms in prognostics and health monitoring of electronic systems: A review. e-Prime
- Advances in Electrical Engineering, Electronics and Energy, 4, 100166. doi: 10.1016/j.prime.2023.100166 Bhatnagar, S., Cassou, M. L., Masry, Z. A., & Mosallam,
A. (2021, June). Data-Driven Fault Detection Method for Electronic Boards in Intelligent Remote Dual-Valve System. In PHM Society European Conference (pp. 1–
article / pii / S016786550500303X (ROC Analysis in Pattern Recognition) doi: https://doi.org/10.1016/j.patrec.2005.10.010 Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63, 3–42. Gu, J., Barker, D., & Pecht, M. (2009). Health monitoring and prognostics of electronics subject to vibration load conditions. IEEE Sensors Journal, 9(11), 1479-1485. Kale, A., Carter-Journet, K., Falgout, T., Heuermann-Kuehn, L., & Zurcher, D. (2014). A probabilistic approach for reliability and life prediction of electronics in drilling and evaluation tools. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2014 (p. 519-532). Kang, J., Varnier, C., Mosallam, A., Zerhouni, N., Youssef,
F. B., & Shen, N. (2022). Risk level estimation for electronics boards in drilling and measurement tools based on the hidden Markov model. In 2022 Prognostics and Health Management Conference (PHM2022 London) (p. 495-500). doi: 10.1109/PHM2022-London52454.2022.00093
Kendall, M., & Stuart, A. (1973). The advanced theory of statistics. vol. 2: Inference and: Relationsship. Griffin. LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395–2399. Lee, Y.-L., & Tjhung, T. (2012). Chapter 3 - rainflow cycle counting techniques. In Y.-L. Lee, M. E. Barkey, & H.-T. Kang (Eds.), Metal fatigue analysis handbook (p. 89-114). Boston: Butterworth-Heinemann. doi:10.1016/B978-0-12-385204-5.00003-3
Merrick, L., & Taly, A. (2020). The explanation game: Explaining machine learning models using shapley values. In A. Holzinger, P. Kieseberg, A. M. Tjoa, &7). doi: 10.36001/phme.2021.v6i1.2903
Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197–227. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi: 10.1016/ S0031-3203(96)00142-2 Endo, T. (1974). Damage evaluation of metals for random or varying loading. In Proceedings of the 1974 Symposium on Mechanical Behavior of Materials (p. 371-
E. Weippl (Eds.), Machine learning and knowledge extraction (pp. 17–38). Cham: Springer International Publishing. Michael G. Pecht, Myeongsu Kang. (2018). Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things. John Wiley and Sons Ltd. Mosallam, A., Kang, J., Youssef, F. B., Laval, L., & Fulton, J. (2023, May). Data-Driven Fault Diagnostics for Neutron Generator Systems in Multifunction Logging-While-Drilling Service. In 2023 Prognostics and Health Management Conference (PHM) (pp. 171–176). doi: 10.1109/PHM58589.2023.00041380).
Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from https :// www .sciencedirect .com / science /
Pecht, M., & Gu, J. (2009). Physics-of-failure-based prognostics for electronic products. Transactions of the Institute of Measurement and Control, 31(3-4), 309-322. doi: 10.1177/0142331208092031 Prisacaru, A., Gromala, P., Han, B., & Zhang, G. Q. (2022). Degradation estimation and prediction of electronic packages using data-driven approach. IEEE Transactions on Industrial Electronics, 69(3), 2996-3006. doi:10.1109/TIE.2021.3068681
Sobczak-Oramus, K., Mosallam, A., Basci, C., & Kang, J. (2022, June). Data-Driven Fault Detection for Transmitter in Logging-While-Drilling Tool. In PHM Society European Conference (Vol. 7, pp. 458–465). doi:10.36001/phme.2022.v7i1.3362
V. Gupta, J. Kang, A. Mosallam, N. Shen, F. B. Youssef, & L. Laval. (2023, June). Automatic Fault Detection for Resistivity Systems in Logging-While-Drilling Tools. In 2023 Prognostics and Health Management Conference (PHM) (pp. 128–132). doi: 10.1109/PHM58589.2023 .00032 Vichare, N., & Pecht, M. (2009). Method to extract parameters from in-situ monitored signals for prognostics (No. US8521443B2).