References
Allam, A., Moussa, M., Tarry, C., & Veres, M. (2021). Detecting teeth defects on automotive gears using deep learning. Sensors, 21(24). Alzubaidi, L., Bai, J., Al-Sabaawi, A., & et al. (2023). A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. Journal of Big Data, 10(46). Atighehchian, P., Branchaud-Charron, F., Freyberg, J., Pardinas, R., Schell, L., & Pearse, G. (2022). Baal, a bayesian active learning library. https://github.com/baal-org/baal/. Atighehchian, P., Branchaud-Charron, F., & Lacoste, A. (2020). Bayesian active learning for production, a systematic study and a reusable library. Bao, C., Zhang, T., Hu, Z., Feng, W., & Liu, R. (2023). Wind
turbine condition monitoring based on improved active learning strategy and knn algorithm. IEEE Access, 11, 13545-13553.
Beluch, W., Genewein, T., N¨urnberger, A., & K¨ohler, J.
(2018). The power of ensembles for active learning in image classification. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 9368–9377).
Boemher, D. E. (2019, 4). Computer vision for gear alignment check and condition monitoring of wind turbine gearboxes.
Chen, J., Zhou, D., Guo, Z., Lin, J., Lyu, C., & Lu, . (2019).
An active learning method based on uncertainty and complexity for gearbox fault diagnosis. IEEE Access, 7, 9022-9031.
Coronado, D., & Fischer, K. (2015). Condition monitoring of wind turbines : State of the art , user experience and recommendations project report..
Feng, K., Ji, J. C., Ni, Q., & Beer, M. (2023). A review of vibration-based gear wear monitoring and prediction techniques. Mech. Syst. Signal Process., 182, 109605. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 ieee conference on computer vision and pattern recognition (cvpr) (p. 770-778).
Iakubovskii, P. (2019). Segmentation models pytorch.
https://github.com/qubvel/segmentation models.pytorch. GitHub.
Kirsch, A., Amersfoort, J., & Gal, Y. (2019). Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning.
Li, W., Li, B., Niu, S., Wang, Z., Liu, B., & Niu, T.
(2023). Selecting informative data for defect segmentation from imbalanced datasets via active learning. Advanced Engineering Informatics, 56, 101933.
Lin, T., Doll´ar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In 2017 ieee conference on computer vision and pattern recognition (cvpr) (p. 936-944). Miltenovi´c, A., Rakonjac, I., Oarcea, A., Peri´c, M., & Rangelov, D. (2022). Detection and monitoring of pitting progression on gear tooth flank using deep learning. Applied Sciences, 12(11).
Powers, D. (2011). Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. ArXiv, abs/2010.16061.
Qin, Y., Xi, D., & Chen, W. (2023). Gear pitting measurement by multi-scale splicing attention u-net. Chinese Journal of Mechanical Engineering, 36(50). Schlagenhauf, T., & Landwehr, M. (2021). Industrial machine tool component surface defect dataset. Data in Brief, 39, 107643.
Surucu, O., Gadsden, S. A., & Yawney, J. (2023). Condition monitoring using machine learning: A review of theory, applications, and recent advances. Expert Systems with Applications, 221, 119738. Van Maele, D., Poletto, J. C., Neis, P., Ferreira, N., Fauconnier, D., & De Baets, P. (2023). Online vision-assisted condition monitoring of gearboxes. In 8th euro. conf. and exhibition on lubrication, maintenance and tribotech (lubmat 2023). Wan, T., Xu, K., Yu, T., Wang, X., Feng, D., Ding, B., & Wang, H. (2023). A survey of deep active learning for foundation models. Intelligent Computing, 2, 0058.