A maturity framework for data driven maintenance

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
Chris Rijsdijk Mike Van de Wijnckel Tiedo Tinga

Abstract

Maintenance decisions range from the simple detection of faults to ultimately predicting future failures and solving the problem. These traditionally human decisions are nowadays increasingly supported by data and the ultimate aim is to make them autonomous. This paper explores the challenges encountered in data driven maintenance, and proposes to consider four aspects in a maturity framework: data / decision maturity, the translation from the real world to data, the computability of decisions (using models) and the causality in the obtained relations. After a discussion of the theoretical concepts involved,  the exploration continues by considering a practical fault detection and identification problem. Two approaches, i.e. experience based and model based, are compared and discussed in terms of the four aspects in the maturity framework. It is observed that both approaches yield the same decisions, but still differ in the assignment of causality. This confirms that a maturity assessment not only concerns the type of decision, but should also include the other proposed aspects.

How to Cite

Rijsdijk, C., Van de Wijnckel, M., & Tinga, T. (2024). A maturity framework for data driven maintenance . PHM Society European Conference, 8(1). https://doi.org/10.36001/phme.2024.v8i1.4039
Abstract 1116 | PDF Downloads 393

##plugins.themes.bootstrap3.article.details##

Keywords

Decision support, Data maturity, Causal inference

References
Al-Sai, Z. A., Husin, M. H., Syed-Mohamad, S. M., Abdullah, R., Zitar, R. A., Abualigah, L., & Gandomi, A. H. (2023). Big Data Maturity Assessment Models: A Systematic Literature Review. Big Data and Cognitive Computing, 7(2), 1–28. https://doi.org/10.3390/BDCC7010002
Borutzky, W. (2012). Bond-graph-based fault detection and isolation for hybrid system models. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 226(6), 742–760. https://doi.org/10.1177/0959651812440665
Borutzky, W. (2021). Fault Diagnosis. In Bond Graph Modelling for Control, Fault Diagnosis and Failure Prognosis (pp. 51–130). Springer International Publishing. https://doi.org/10.1007/978-3-030-60967-2_3
Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference (2nd ed.). Springer New York. https://doi.org/10.1007/B97636
CEN. (2007). EN 1990-1999: Eurocodes for buildings. European Committee for Standardisation.
CEN. (2019). EN 13306: Maintenance terminology. European Committee for Standardisation.
Chandler, G., Denson, W. K., Rossi, M. J., & Wanner, R. (1991). Failure Mode/Mechanism Distributions. Reliability Analysis Center.
Church, A. (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics, 58(2), 345. https://doi.org/10.2307/2371045
Fisher, R. A. (1935). The design of experiments. Oliver & Boyd.
Fisher, R. A. (1958). Lung cancer and cigarettes? Nature, 182(4628), 108. https://doi.org/10.1038/182108a0
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Für Mathematik Und Physik, 38(1), 173–198. https://doi.org/10.1007/BF01700692/METRICS
Hoffman, D. D. (2019). The case against reality: why evolution hid the truth from our eyes. W.W. Norton & Company.
IACS. (2024). Blue book. International Association of Classification Societies.
IEC. (2015). IEC 60050: International Electrotechnical Vocabulary (IEV) - Part 192: Dependability. International Electrotechnical Commission.
Isermann, R. (2006). Fault-diagnosis systems: An introduction from fault detection to fault tolerance. In Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-30368-5/COVER
Isermann, R. (2011). Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12767-0
ISO. (2014). ISO 55000: Asset management — Overview, principles and terminology. International Organisation for Standardisation.
ISO. (2015). ISO 9000: Quality management systems — Fundamentals and vocabulary. International Organisation for Standardisation.
ISO. (2016). ISO 14224: Petroleum, petrochemical and natural gas industries: Collection and exchange of reliability and maintenance data for equipment. International Organisation for Standardisation.
Karnopp, D., Margolis, D., & Rosenberg, R. (2012). System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems (5th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118152812
Lu, S., Lu, J., An, K., Wang, X., & He, Q. (2023). Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review. IEEE Internet of Things Journal, 10(13), 11093–11116. https://doi.org/10.1109/JIOT.2023.3239944
MIL-HDBK-217F. (1991). MIL-HDBK-217F: Reliability prediction of electronic equipment. U.S. Department of Defense.
OREDA. (2002). OREDA: offshore reliability data handbook (4th ed.). OREDA Participants.
Pearl, J. (2009). Causality: Models, reasoning, and inference, second edition. In Causality: Models, Reasoning, and Inference, Second Edition (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511803161
Rado, T. (1962). On Non‐Computable Functions. Bell System Technical Journal, 41(3), 877–884. https://doi.org/10.1002/J.1538-7305.1962.TB00480.X
Rubin, D. B. (2005). Causal Inference Using Potential Outcomes. Journal of the American Statistical Association, 100(469), 322–331. https://doi.org/10.1198/016214504000001880
Samantaray, A. K., Medjaher, K., Ould Bouamama, B., Staroswiecki, M., & Dauphin-Tanguy, G. (2006). Diagnostic bond graphs for online fault detection and isolation. Simulation Modelling Practice and Theory, 14(3), 237–262. https://doi.org/10.1016/J.SIMPAT.2005.05.003
Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22. https://doi.org/10.1016/S0019-9958(64)90223-2
Tiddens, W., Braaksma, J., & Tinga, T. (2023). Decision framework for predictive maintenance method selection. Applied Sciences, 13(3). https://doi.org/10.3390/APP13032021
Tinga, T., Homborg, A. M., & Rijsdijk, C. (2023). Data-driven maintenance of military systems: Potential and challenges. In P. B. M. J. Pijpers, M. Voskuijl, & R. Beeres (Eds.), Towards a data-driven military. A multi-disciplinary perspective (pp. 73–96). Leiden University Press. https://doi.org/10.24415/9789087284084
Turing, A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230–265. https://doi.org/10.1112/PLMS/S2-42.1.230
Wright, S. (1934). The Method of Path Coefficients. The Annals of Mathematical Statistics, 5(3), 161–215. http://www.jstor.org/stable/2957502
Section
Technical Papers