Enhancing Lithium-ion Battery Safety: Analysis and Detection of Internal Short Circuit basing on an Electrochemical-Thermal Modeling

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
YIQI JIA LORENZO BRANCATO MARCO GIGLIO FRANCESCO CADINI

Abstract

As the main cause of thermal runaway, the prompt identification of Internal Short Circuit (ISC) occurrences in lithium-ion batteries (LIBs) has emerged as a critical priority for ensuring battery safety. To address this critical need, for a comprehensive understanding of ISC behaviors, an electrochemical-thermal-ISC coupled model has been developed in this work to simulate battery performance across various ISC levels. This model is also utilized to validate the efficacy and robustness of the advanced detection approach proposed. By integrating both thermal and electrical aspects using the Pseudo Two-Dimensional (P2D) and Energy Balance Equation (EBE), our model serves as an efficient surrogate for ISC experiments. Key ISC indicators have been analyzed and integrated into the proposed ISC detection algorithm to enhance its effectiveness. The algorithm utilizes an Equivalent Circuit Model (ECM)-based approach for estimating ISC resistance. This research not only advances our understanding of ISC dynamics but also establishes a robust framework for the timely and reliable detection of ISCs. These advancements significantly enhance the overall safety and reliability of LIBs in electric vehicles (EVs).

How to Cite

JIA, Y., BRANCATO, L., GIGLIO, M., & CADINI, F. (2024). Enhancing Lithium-ion Battery Safety: Analysis and Detection of Internal Short Circuit basing on an Electrochemical-Thermal Modeling. PHM Society European Conference, 8(1), 7. https://doi.org/10.36001/phme.2024.v8i1.4035
Abstract 197 | PDF Downloads 98

##plugins.themes.bootstrap3.article.details##

Keywords

Lithium-ion batteries, Internal short circuit, Pseudo Two-Dimentional, Battery detection

References
A123 Systems. (2012). Nanophosphate high power lithium ion cell anr26650m1 b. Data Sheet. (483 Specification, pp. 2–3).
Abaza, A., Ferrari, S., Wong, H. K., Lyness, C., Moore, A., Weaving, J., ... Bhagat, R. (2018). Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells. Journal of Energy Storage, 16, 211-217. doi: https://doi.org/10.1016/j.est.2018.01.015
Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A general energy balance for battery systems. Journal of the Electrochemical Society, 132(1), 5.
Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., ... Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99. doi: 10.1016/j.jechem.2020.10.017
Feng, X., He, X., Lu, L., & Ouyang, M. (2018). Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model. Journal of The Electrochemical Society, 165(2), A155.
Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., & He, X. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10(May 2017), 246–267. doi: 10.1016/j.ensm.2017.05.013
Feng, X., Weng, C., Ouyang, M., & Sun, J. (2016). Online internal short circuit detection for a large format lithium ion battery. Applied Energy, 161, 168–180. doi: 10.1016/j.apenergy.2015.10.019
Hu, J., Wei, Z., & He, H. (2020). Improved internal short circuit detection method for Lithium-Ion battery with self-diagnosis characteristic. IECON Proceedings (Industrial Electronics Conference), 2020-October, 3741–3746. doi: 10.1109/IECON43393.2020.9254885
Huang, L., Liu, L., Lu, L., Feng, X., Han, X., Li, W., ... Ouyang, M. (2021). A review of the internal short circuit mechanism in lithium-ion batteries: Inducement, detection and prevention. International Journal of Energy Research, 45(11), 15797–15831. doi: 10.1002/er.6920
Jia, Y., Brancato, L., Giglio, M., & Cadini, F. (2024). Temperature enhanced early detection of internal short circuits in lithium-ion batteries using an extended Kalman filter. Journal of Power Sources, 591, 233874. doi: https://doi.org/10.1016/j.jpowsour.2023.233874
Jokar, A., Rajabloo, B., Désilets, M., & Lacroix, M. (2016). Review of simplified pseudo-two-dimensional models of lithium-ion batteries. Journal of Power Sources, 327, 44-55. doi: https://doi.org/10.1016/j.jpowsour.2016.07.036
Keates, A. W., Otani, N., Nguyen, D. J., Matsumura, N., & Li, P. T. (2010, September 14). Short circuit detection for batteries. Google Patents. (US Patent 7,795,843)
Kim, G.-H., Smith, K., Ireland, J., & Pesaran, A. (2012). Fail-safe design for large capacity lithium-ion battery systems. Journal of Power Sources, 210, 243-253. doi: https://doi.org/10.1016/j.jpowsour.2012.03.015
Lai, X., Jin, C., Yi, W., Han, X., Feng, X., Zheng, Y., & Ouyang, M. (2021). Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Materials, 35(October 2020), 470–499. doi: 10.1016/j.ensm.2020.11.026
Liu, B., Jia, Y., Li, J., Yin, S., Yuan, C., Hu, Z., ... Xu, J. (2018). Safety issues caused by internal short circuits in lithium-ion batteries. Journal of Materials Chemistry A, 6, 21475-21484. doi: 10.1039/C8TA08997C
Liu, L., Feng, X., Zhang, M., Lu, L., Han, X., He, X., & Ouyang, M. (2020). Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Applied Energy, 259, 114143. doi: 10.1016/j.apenergy.2019.114143
Orendorff, C. J., Roth, E. P., & Nagasubramanian, G. (2011). Experimental triggers for internal short circuits in lithium-ion cells. Journal of Power Sources, 196(15), 6554–6558.
Prada, E., Di Domenico, D., Creff, Y., Bernard, J., Sauvant-Moynot, V., & Huet, F. (2012). Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications. Journal of The Electrochemical Society, 159(9), A1508–A1519. doi: 10.1149/2.064209jes
Sazhin, S. V., Dufek, E. J., & Gering, K. L. (2016, August). Enhancing li-ion battery safety by early detection of nascent internal shorts. ECS Transactions, 73(1), 161. doi: 10.1149/07301.0161ecst
Seo, M., Goh, T., Park, M., Koo, G., & Kim, S. W. (2017). Detection of internal short circuit in lithium ion battery using model-based switching model method. Energies, 10(1), 76.
Seo, M., Park, M., Song, Y., & Kim, S. W. (2020). Online Detection of Soft Internal Short Circuit in Lithium-Ion Batteries at Various Standard Charging Ranges. IEEE Access, 8, 70947–70959. doi: 10.1109/ACCESS.2020.2987363
Song, M., Hu, Y., Choe, S., & Garrick, T. (2020). Analysis of the heat generation rate of lithium ion battery using an electrochemical thermal model. Journal of the Electrochemical Society, 167(12), 120503. doi: 10.1149/1945-7111/aba96b
Spinner, N. S., Field, C. R., Hammond, M. H., Williams, B. A., Myers, K. M., Lubrano, A. L., ... Tuttle, S. G. (2015). Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber. Journal of Power Sources, 279, 713–721.
Wu, X., Wei, Z., Wen, T., Du, J., Sun, J., & Shtang, A. A. (2023). Research on short-circuit fault-diagnosis strategy of lithium-ion battery in an energy-storage system based on voltage cosine similarity. Journal of Energy Storage, 71(May), 108012. doi: 10.1016/j.est.2023.108012
Yokotani, K. (2014). Battery system and method for detecting internal short circuit in battery system. Google Patents. (US Patent 8,643,332)
Zhu, J., Zhang, X., Sahraei, E., & Wierzbicki, T. (2016). Deformation and failure mechanisms of 18650 battery cells under axial compression [Article]. Journal of Power Sources, 336, 332 – 340. (Cited by: 173) doi: 10.1016/j.jpowsour.2016.10.064
Section
Technical Papers