Soft Ordering 1-D CNN to Estimate the Capacity Factor of Windfarms for Identifying the Age-Related Performance Degradation

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 27, 2024
Manuel Sathyajith Mathew Surya Teja Kandukuri Christian W Omlin

Abstract

Wind energy plays a vital role in meeting the sustainable development goals set forth by the United Nations. Performance of wind energy farms degrades gradually with aging. For deriving maximum benefits from these capital-intensive projects, these degradation patten should be analyzed and understood. Variations in the capacity factor over the years could be an indication of the age-related degradation of the wind farms. In this study, we propose a novel data-driven model to estimate the capacity factor of wind farms, which could then be used to estimate its age-related performance decline. For this, a 1-dimensional convolutional neural network (1-D CNN) is developed with a soft ordering mechanism under this study. The model was optimized using Huber loss to counteract the effects of outliers in data. The developed model could perform very well in capturing the underlying dynamics in the data as evidenced by a normalized root mean squared error (NRMSE) of 0.102 and a mean absolute error (MAE) of 0.035 on the test dataset.

How to Cite

Mathew, M. S., Kandukuri, S. T., & Omlin, C. W. (2024). Soft Ordering 1-D CNN to Estimate the Capacity Factor of Windfarms for Identifying the Age-Related Performance Degradation. PHM Society European Conference, 8(1), 9. https://doi.org/10.36001/phme.2024.v8i1.4028
Abstract 152 | PDF Downloads 95

##plugins.themes.bootstrap3.article.details##

Keywords

Windfarm, Performance Degradation, Capacity Factor Estimation, CNN, Age-related degradation

References
Adedipe, T., & Shafiee, M. (2021). An economic assessment framework for decommissioning of offshore wind farms using a cost breakdown structure. The international journal of life cycle assessment, 26(2), 344-370. https://doi.org/10.1007/s11367-020-01793-x Astolfi, D., Byrne, R., & Castellani, F. (2021). Estimation of the performance aging of the vestas v52 wind turbine through comparative test case analysis. Energies, 14(4), 915. https://www.mdpi.com/1996-1073/14/4/915 Barron, J. T. (2017). Continuously differentiable exponential linear units. arXiv preprint arXiv:1704.07483. https://doi.org/10.48550/arXiv.1704.07483 Byrne, R., Astolfi, D., Castellani, F., & Hewitt, N. J. (2020). A study of wind turbine performance decline with age through operation data analysis. Energies, 13(8), 2086. https://www.mdpi.com/1996-1073/13/8/2086 Chen, X., Zhang, X., Dong, M., Huang, L., Guo, Y., & He, S. (2021). Deep learning-based prediction of wind power for multi-turbines in a wind farm. Frontiers in Energy Research, 9, 723775. https://doi.org/10.3389/fenrg.2021.723775 Germer, S., & Kleidon, A. (2019). Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014? PLoS One, 14(2), e0211028. https://doi.org/10.1371/journal.pone.0211028 Goal 7: Affordable and clean energy. (2024). The Global Goals. Retrieved 13/03/2024 from https://www.globalgoals.org/goals/7-affordable-and-

clean-energy/ Hamilton, S. D., Millstein, D., Bolinger, M., Wiser, R., & Jeong, S. (2020). How does wind project performance change with age in the united states? Joule, 4(5), 10041020. https://doi.org/https://doi.org/10.1016/j.joule.2020.04.0

05 He, K., Zhang, X., Ren, S., & Sun, J. (2016, 27-30 June 2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778, arXiv: 1512.03385. https://doi.org/10.48550/arXiv.1512.03385 Hughes, G. (2012). The performance of wind farms in the United Kingdom and Denmark. Renewable Energy Foundation, 48. International Energy Agency. (2023). World energy outlook 2023 (World Energy Outlook, Issue. https://www.iea.org/reports/world-energy-outlook-2023

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, 448-456. https://doi.org/10.48550/arXiv.1502.03167 Kazmi, S., Gorgulu, B., Cevik, M., & Baydogan, M. G. (2023). A concurrent cnn-rnn approach for multi-step wind power forecasting. arXiv preprint arXiv:2301.00819. https://doi.org/10.48550/arXiv.2301.00819 Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1d convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107 398 LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Handwritten digit recognition with a back-propagation network. Advances in neural information processing systems, 2. Liu, T., Huang, Z., Tian, L., Zhu, Y., Wang, H., & Feng, S. (2021). Enhancing wind turbine power forecast via convolutional neural network. Electronics, 10(3), 261. https://doi.org/10.3390/electronics10030261 Lu, L., Shin, Y., Su, Y., & Karniadakis, G. E. (2019). Dying relu and initialization: Theory and numerical examples. arXiv preprint arXiv:1903.06733. https://doi.org/10.48550/arXiv.1903.06733 Mathew, M. S., Kandukuri, S. T., & Omlin, C. W. P. (2022). Estimation of wind turbine performance degradation with deep neural networks. 7 th European Conference of the Prognostics and Health Management Society 2022, 7(1), 351-359. https://doi.org/10.36001/phme.2022.v7i1.3328 Olauson, J., Edström, P., & Rydén, J. (2017). Wind turbine performance decline in Sweden. Wind Energy, 20(12),

2049-2053. https://doi.org/https://doi.org/10.1002/we.2132 Pan, Y., Hong, R., Chen, J., Feng, J., & Wu, W. (2021). Performance degradation assessment of wind turbine gearbox based on maximum mean discrepancy and multi-sensor transfer learning. Structural Health Monitoring, 20(1), 118-138. https://doi.org/10.1177/1475921720919073 Ravishankara, A. K., Ozdemir, H., & Weide, E. v. d. Effect of leading edge erosion on wind turbine rotor aerodynamics. In Aiaa scitech 2022 forum. https://doi.org/10.2514/6.2022-0276 Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352-2449. https://doi.org/10.1162/neco_a_00990 Sachs, J. D., Kroll, C., Lafortune, G., Fuller, G., & Woelm, F. (2022). Sustainable development report 2022. Cambridge University Press. https://doi.org/10.1017/9781009210058 Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. Advances in neural information processing systems, 29. https://doi.org/10.48550/arXiv.1602.07868 Sareen, A., Sapre, C. A., & Selig, M. S. (2014). Effects of leading edge erosion on wind turbine blade performance. Wind Energy, 17(10), 1531-1542. https://doi.org/https://doi.org/10.1002/we.1649 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556 Staffell, I., & Green, R. (2014). How does wind farm performance decline with age? Renewable Energy, 66, 775-786. https://doi.org/https://doi.org/10.1016/j.renene.2013.10.

041 Veena, R., Manuel, S. M., Mathew, S., & Petra, I. (2020). Parametric models for predicting the performance of wind turbines. Materials Today: Proceedings, 24, 17951803. https://doi.org/https://doi.org/10.1016/j.matpr.2020.03.6 04 WindEurope asbl/vzw. (2024). Wind energy today | windeurope. Retrieved 13/03/2024 from https://windeurope.org/about-wind/wind-energy-today/

Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., & Melero, J. J. (2018). Lifetime extension of onshore wind turbines: A review covering germany, Spain, Denmark, and the UK. Renewable and Sustainable Energy Reviews, 82, 1261-1271.
Section
Technical Papers