References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., . . . Nahavandi, S. (2021, December). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297. doi:
terior predictive framework for weighting ensemble regional climate models. Geoscientific Model Development, 10(6), 2321–2332. Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman,
10.1016/j.inffus.2021.05.008
Bai, G., & Chandra, R. (2023, November). Gradient boosting Bayesian neural networks via Langevin MCMC. Neurocomputing, 558, 126726. doi:
10.1016/j.neucom.2023.126726
Barrett, J. P. (1974). The coefficient of determination—some limitations. The American Statistician, 28(1), 19–20. Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra,
D. (2015). Weight uncertainty in neural network. In F. Bach & D. Blei (Eds.), International conference on machine learning (Vol. 37, pp. 1613–1622). Lille, France: PMLR. Bosman, P. A., & Thierens, D. (2000). Negative loglikelihood and statistical hypothesis testing as the basis of model selection in ideas. In Proceedings of the tenth dutch–netherlands conference on machine learning. tilburg university. Che, Y., Zheng, Y., Forest, F. E., Sui, X., Hu, X., & Teodorescu, R. (2024, January). Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection. Reliability Engineering & System Safety, 241, 109603. doi:
T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5), 10981118. doi: 10.1175/MWR2904.1 Hadigol, M., Maute, K., & Doostan, A. (2015). On uncertainty quantification of lithium-ion batteries: Application to an lic6/licoo2 cell. Journal of Power Sources, 300, 507–524. Hodson, T. O. (2022). Root mean square error (rmse) or mean absolute error (mae): When to use them or not. Geoscientific Model Development Discussions, 2022, 1–10. Jung, Y., Jo, H., Choo, J., & Lee, I. (2022, June). Statistical model calibration and design optimization under aleatory and epistemic uncertainty. Reliability Engineering & System Safety, 222, 108428. doi:
10.1016/j.ress.2022.108428
Kuleshov, V., Fenner, N., & Ermon, S. (2018, July). Accurate uncertainties for deep learning using calibrated regression. In J. Dy & A. Krause (Eds.), Proceedings of the 35th international conference on machine learning (Vol. 80, pp. 2796–2804). PMLR.
LeBlanc, M., & Tibshirani, R. (1996). Combining estimates in regression and classification. Journal of the American Statistical Association, 91(436), 1641–1650.
Lee, G., Kwon, D., & Lee, C. (2023). A convolutional neural network model for SOH estimation of Li-ion batteries with physical interpretability. Mechanical Systems and Signal Processing, 188, 110004. doi:
10.1016/j.ress.2023.109603
10.1016/j.ymssp.2022.110004
Chung, Y., Char, I., Guo, H., Schneider, J., & Neiswanger, W.
(2021). Uncertainty toolbox: an open-source library for assessing, visualizing, and improving uncertainty quantification. arXiv preprint arXiv:2109.10254. Cobb, A. D., Himes, M. D., Soboczenski, F., Zorzan, S., O’Beirne, M. D., Baydin, A. G., . . . Angerhausen, D. (2019, June). An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval. The Astronomical Journal, 158(1), 33. doi: 10.3847/15383881/ab2390 Dai, H., Pollock, M., & Roberts, G. O. (2023, February).
Bayesian fusion: Scalable unification of distributed statistical analyses. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(1), 84–107. doi: 10.1093/jrsssb/qkac007 Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., . . . Saurous, R. A. (2017, November). TensorFlow Distributions (No. arXiv:1711.10604). arXiv.
Fan, Y., Olson, R., & Evans, J. P. (2017). A bayesian pos-
Liu, Y., Sun, J., Shang, Y., Zhang, X., Ren, S., & Wang, D. (2023, May). A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm. Journal of Energy Storage, 61, 106645. doi: 10.1016/j.est.2023.106645 Nam, G., Yoon, J., Lee, Y., & Lee, J. (2021). Diversity matters when learning from ensembles. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in neural information processing systems (Vol. 34, pp. 8367–8377). Curran Associates, Inc. Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., . . . Hu, C. (2023). Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial. Mechanical Systems and Signal Processing, 205, 110796. doi:10.1016/j.ymssp.2023.110796
Saha, B., & Goebel, K. (2007). Nasa ames prognostics data repository. NASA Ames, Moffett Field, CA, USA.