A Hierarchical XGBoost Early Detection Method for Quality and Productivity Improvement of Electronics Manufacturing Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This paper presents XGBoost classifier-based methods to solve three tasks proposed by the European Prognostics and Health Management Society (PHME) 2022 conference. These tasks are based on real data from a Surface Mount Technologies line. Each of these tasks aims to improve the efficiency of the Printed Circuit Board (PCB) manufacturing process, facilitate the operator’s work and minimize the cases of manual intervention. Due to the structured nature of the problems proposed for each task, an XGBoost method based on encoding and feature engineering is proposed. The proposed methods utilise the fusion of test values and system characteristics extracted from two different testing equipment of the Surface Mount Technologies lines. This work also explores the problems of generalising prediction at the system level using information from the subsystem data. For this particular industrial case: the challenges with the changes in the number of subsystems. For Industry 4.0, the need for interpretability is very important. This is why the results of the models are analysed using Shapley values. With the proposed method, our team took the first place, capable of successfully detecting at an early stage the defective components for tasks 2 and 3.
How to Cite
##plugins.themes.bootstrap3.article.details##
XGBoost classifier, Fault detection, Electronics Manufacturing Systems
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.