Improved Time-Frequency Representation for Non-stationary Vibrations of Slow Rotating Machinery
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The short-time Fourier transform (STFT) is a staple analysis tool for vibration signal processing due to it being a robust, non-parametric, and computationally efficient technique to analyze non-stationary signals. However, despite these beneficial properties, the STFT suffers from high variance, high sidelobes, and a low resolution. This paper investigates an alternative non-parametric method, namely the sliding-window iterative adaptive approach, to use for time-frequency representations of non-stationary vibrations. This method reduces the sidelobe levels and allows for high resolution estimates. The performance of the method is evaluated on both simulated and experimental vibration data of slow rotating machinery such as a multi-megawatt wind turbine gearbox. The results indicate significant benefits as compared to the STFT with regard to accuracy, readability, and versatility.
How to Cite
##plugins.themes.bootstrap3.article.details##
Signal processing, Short-time Fourier transform, Non-stationary signals, Non-parametric method, Wind turbine gearbox
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.