Data-driven Prognostics based on Evolving Fuzzy Degradation Models for Power Semiconductor Devices
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The increasing application of power converter systems based on semiconductor devices such as Insulated-Gate Bipolar Transistors (IGBTs) has motivated the investigation of strategies for their prognostics and health management. However, physicsbased degradation modelling for semiconductors is usually complex and depends on uncertain parameters, which motivates the use of data-driven approaches. This paper addresses the problem of data-driven prognostics of IGBTs based on evolving fuzzy models learned from degradation data streams. The model depends on two classes of degradation features: one group of features that are very sensitive to the degradation stages is used as a premise variable of the fuzzy model, and another group that provides good trendability and monotonicity is used for the auto-regressive consequent of the fuzzy model for degradation prediction. This strategy allows obtaining interpretable degradation models, which are improved when more degradation data is obtained from the Unit Under Test (UUT) in real time. Furthermore, the fuzzy-based Remaining Useful Life (RUL) prediction is equipped with an uncertainty quantification mechanism to better aid decisionmakers. The proposed approach is then used for the RUL prediction considering an accelerated aging IGBT dataset from the NASA Ames Research Center.
How to Cite
##plugins.themes.bootstrap3.article.details##
Prognostics, Data-driven, Degradation, Fuzzy models, Remaining Useful Life
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.